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ABSTRACT: The paper presents the idea of using an integrated, Prolog-based platform for an efficient implementation
of embedded control systems. A principal idea consists in separating an embedded control system into two layers. The
first one is the logic control layer, where the control procedures are implemented in Prolog. The second one provides
means for communication with particular devices. The paper describes the concept of an integrated platform allowing
for implementation of Prolog-based control routines. The platform itself is built on top of a GNU/Linux based embed-
ded runtime, suited for several hardware architectures. In the paper key architectural and implementation issues of the
platform are discussed. They are presented using a control system example. The paper also discusses practical hardware
implementation on the Palm III platform based on the Motorola/Freescale DragonBall CPU.

INTRODUCTION

The rule-based programming paradigm [2, 3] plays an
important role in number of engineering domains, includ-
ing intelligent and real-time control. However, an effi-
cient design of rule-based systems, including the knowl-
edge engineering process, encounters number of prob-
lems [2, 3]. In recent years rule-based systems design
benefited from advanced design and implementation tools,
that use number of techniques taken from the software en-
gineering [12]. In this paper an integrated approach to the
design and implementation of such systems, suitable for
embedded applications is put forward.1

This paper follows the approach presented in detail in [7,
6]. In this approach the design of the rule-base of the
control system is supported by an integrated design, anal-
ysis and implementation process. The process is centered
around a new visual knowledge representation method
for rule-based systems called XTT. It combines selected
important features of decision tables and decision trees
in order to support the design and implementation pro-
cess efficiently. The XTT-based design framework, the
Mirella environment, provides a formal Prolog-based means
to analyze the designed rulebase [9, 10]; some critical
properties such as determinism or completeness can be
automatically verified. A rule-based system designed with
XTT is implementation agnostic. The design tools pro-
vided withMirella allow for translation to different rule-
based implementations. They also allow for fast proto-
typing of rule-based systems using Prolog [1]. The de-
signed rulebase is automatically translated into a prede-
fined Prolog form, which serves as an executable rule-
based system prototype.
This paper extends these ideas by presenting a new ap-
proach to practical implementation ofembeddedrule-based
systems. A principal idea is to provide an integrated plat-
form for embedding Prolog into a hardware control sys-
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tem. This would allow for practical deployment of a
XTT-based control logic into an embedded system. The
platform is composed of a Prolog interpreter embedded
into a GNU/Linux environment controlling the hardware.
The complete rule-based system development cycle pro-
posed in this approach is shown in Fig.1. It includes the
following phases:

1. Rule-based control logic design and analysis using
a high level knowledge representation, the XTT.

2. Automatic translation of the XTT rulebase into an
executable Prolog-based prototype.

3. The deployment of the prototype into an embed-
ded control system, using the integrated Embedded
Prolog Platform (theEPP).

This paper mainly focuses on the third phase of the above
cycle. It presents the architecture and implementation
of the platform. Results of some practical experiments,
including the deployment an the Palm III on Motorola
DragonBall CPU platform are also provided.

PLATFORM ARCHITECTURE

In the approach presented in this paper the control sys-
tem logic is written in Prolog. The language is a good
choice thanks to its advanced features such as high ex-
pressiveness and conceptual logic-based knowledge rep-
resentation. However, there are some serious obstacles
in using Prolog for practical implementation of real-life
control systems. The main problem is, that Prolog is a
high level language, and generic implementations do not
provide robust means for hardware communication and
control. This is why an integrated platform combining
Prolog-based control layer with lower level runtime is
proposed.
In this approach the platform (see Fig. 2) contains three
main layers:
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Fig. 1. The system development cycle

� Prolog layer, including an advanced Prolog inter-
preter (and compiler), that executes the control logic
code,

� a supervising middleware layer, used for integra-
tion of the Prolog interpreter with the operating
system environment,

� an embedded multiplatform operating system with
strong hardware support via number of drivers and
real-time extensions, providing the main runtime
environment.

The maincontrol logic is contained in a declarative Pro-
log program. It is executed by theProlog compiler(all
advanced Prolog „interpreters” actually precompile the
code). There are number of advanced Prolog implemen-
tations available, namely the SWI Prolog and GNU Pro-
log, with different features (e.g.Constraint Logic Pro-
gramming). This is why an extraProlog abstractionlayer
has been provided (see next section) in the Prolog layer.
The Prolog layer is controlled in by thereal-time super-
visor middleware, using Prolog-to-C interface. It is com-
posed of several elements, includingevent management,
and hardware drivers communication and control. This
layer providesunified driver interface for hardware de-
vice drivers provided by the operating systems. The su-
pervising layer is implemented in pure ANSI C language
for speed and efficiency.
The foundation for this architecture is a multiplatform
embedded GNU/Linux-based environment with possible
real-time extensions, providing low-level hardware drivers.
The idea of using Prolog as the high-level knowledge
specification language for control systems is not com-
pletely new though. In [11] an idea of combining Pro-
log knowledge representation with real-time features of
the Ada language have been presented. However, this
approach differed largely to the one presented in this pa-
per. In [11] the proposal of developing the RT Prolog

Fig. 2. The platform architecture

interpreter as a Task in Ada has been put forward. In or-
der to do this a small Prolog interpreter was developed in
Ada and integrated with a larger Ada system. This ap-
proach does not address the practical construction of an
embedded environment. It also relies on the low-level
Ada runtime implementation. In contrast, the approach
presented in this paper offers a complete solution, from
the high level logic design, to the actual hardware imple-
mentation.

PLATFORM IMPLEMENTATION

The approach discussed in this paper is based on the idea
of controlling Prolog-based logical core, using a ANSI-C
based real-time supervisor. This is made possible due to
advanced Prolog-to-C interfaces found in multiple Pro-
log compilers. However, there are some implementation
problems, related to different Prolog-to-C APIs.
One has to decide whether to choose a single specific
Prolog implementation, or try to support several of them.
The former approach seems to be more desired, since in
practice different Prolog implementations have some im-
portant features; e.g. SWI Prolog has rich external proce-
dure library and a clean API, GNU Prolog provides CLP
(Constraint Logic Programming) capabilities and good
performance, YAP Prolog has CLP and SWI interface.
So, a decision has been made to provide means to work
with different Prolog platforms.
In order to do this, aProlog abstraction layerhas to be
provided. The SWI Prolog API has been chosen as the
reference one. It seems to be the most flexible and well
established. In fact some other Prolog compilers, namely
YAP Prolog provide SWI compatibility API. Currently
in our approach both SWI and YAP Prolog are supported.
GNU Prolog compatibility is in the works, and is planned
as a future extension.



Fig. 3. Supervisor architecture

Real-Time Supervisor

Thereal-time supervisor’stask is to control Prolog-based
core in real time. It provides basic time handling features,
including event handling by Prolog procedures. The struc-
ture of the supervisor is shown in Fig. 3.
The Prolog Call Managerprovides the communication
with the Prolog interpreter. Its main goal is to monitor
the events and execute Prolog-based registered event han-
dlers. It is also responsible for active monitoring of the
Prolog layer. In case of an error (e.g. in a event handler)
it provides appropriate emergency procedures.
The Event Managermanges all of the events registered
and handled in the system. All of the events are scheduled
according to their priority. In case an event handler is
provided by the Prolog layer, the Event Manager sends
the execution request to the Call Manager. The events not
having handlers are ignored by default. However, some
generic handling procedures can also be provided.
TheDriver Managermanages the unified device drivers.
It is responsible for registering new drivers, and the I/O
procedures they provide. It also routes the appropriate
event information the the corresponding device.
The Supervisor also provides a virtual timer driver. It
provides number of generic timers, allowing the Prolog
layer to have the access the the time-related information.

GNU/Linux Runtime

The whole runtime has been built using widely available
GNU/Linux components. GNU/Linux has been chosen
because of its availability, high customization capabili-
ties, including the right the modify and extend the source
code, thanks to the GNU GPL license, and good hard-
ware support. It is also important to point out, that the
Linux kernel provides number of real-time related fea-
tures, such as low-latency, kernel preemption and real-
time extension (e.g. the RT Linux).
The following software components constitute the
GNU/Linux runtime:

� the Linux kernel configured and optimized for an
embedded system,

� the LibC library providing system functions,

� a simple Init facility, providing basic system setup
and software upload mechanism,

� a simple system shell for program execution,

� some extra shell utilities may be needed for other
Unix-specific functions.

The Linux Kernel used comes from the�Clinux Embed-
ded Linux/Microcontroller Project (uclinux.org ),
which provides an operating system including Linux ker-
nel releases for 2.0 2.4 and 2.6 as well as a collection of
user applications, libraries and tool chains for number of
processor architectures, including chips with no Memory
Management Units (MMUs).
The Unix LibC library for embedded systems is provided
by the�Clibc Project (uclibc.org ). The �Clibc is
much smaller than the GNU C Library, but nearly all ap-
plications supported by GLibC also work perfectly with
�Clibc. It currently runs on standard Linux and MMU-
less systems with support for number of CPUs.
Themshshell, a part of the BusyBox Project (busybox.
net ), is used as interpreter for the Init script and few
core utilities (such as mount, expand) needed for the sys-
tem setup. Software upload is provided by Base64 en-
coder/decoder and other shell scripts. BusyBox combines
tiny versions of many common Unix utilities into a single
small executable. It provides replacements for most of
the utilities you usually find in GNU fileutils, shellutils,
etc BusyBox itself requires a MMU or XIP (eXecution
In Place) support, which is not present on all platforms.
However,mshitself does not have such requirements.
Using the components described above a prototype
GNU/Linux runtime has been built. It has only about
100kB in size, stored in compressed form in ROM or
Flash memory. It is sufficient for a complete system boot
and setup, as well as executing the Prolog runtime.

REAL-TIME CONTROL ASPECTS

When it comes to real-life control systems, the real-time
aspect of the control has to be considered. Prolog lan-
guage itself does not provide any explicit time-related
facilities. However, the solution presented in the paper
introduces a possibility of Prolog-based control in real-
time. It is based on the idea of extending the Supervisor
with a real-time features.
The Prolog Logic Controller process is controlled by the
Supervisor. The Supervisor itself runs in the GNU/Linux
environment on top of the Linux Kernel. The current
Linux kernel v2.6 has some well-tested real time fea-
tures and extensions such as: low latency control, ker-
nel preemption, and number of external real-time exten-
sions. The include (but are not limited to):RTLinux
(www.rtlinux.com ) a hard-real time OS running Linux,
and RTAI a comprehensive Real Time Application In-
terface (www.rtai.org ). Currently for test purposes
Linux kernel v2.0 has been used in the prototype (due to
memory constraints of the Palm IIIx). On superior hard-
ware all of the results can be reproduced with kernels 2.4
and 2.6.



The current version of the Supervisor and Logic Con-
troler has some basic time-related features, such as: wake-
up event, and a simple built in timer are provided. They
allow for simple soft-real time operation. In the future
these will be extended and integrated with advanced fea-
tures the Linux kernel provides, in order to allow a com-
plete real-time environment, possibly even a hard real-
time one.

CONTROL SYSTEM EXAMPLE

As a proof of concept a simple elevator control system
has been implemented. Some illustrative excerpts of the
Prolog implementation are included below.
Every control logic begins with event handler registration
predicates:

/* Event namespace:
<driver>/<event> OR
<driver>/<device>/<event>

Driver namespace:
driver_<driver>_<procedure> */

idle.
system_init :-

register_event_handler(
’button_pad/button_pushed’,button_pushed),

register_event_handler(
’elevator/on_level’, elevator_on_level),

register_event_handler(
’elevator/stopped’, elevator_stopped),

register_event_handler(
’doors/opened’, doors_opened),

register_event_handler(
’doors/closed’, doors_closed).

Main event handling predicates are as follows:

button_pushed(L) :-
idle,
assert(level(L)),
driver_doors_open.

button_pushed(L) :-
assert(level(L)).

elevator_on_level(L) :-
level(L),
retract(level(L)),
driver_elevator_stop.

elevator_stopped :-
driver_doors_open.

doors_opened :-
driver_timer_create(’doors_timer’),
register_event_handler(

’timer/doors_timer/alert’,
time_to_close_doors),

driver_timer_run_once(
’doors_timer’, ’+5s’).

doors_closed :-
choose_direction.

When the elevator’s door are opened an extra door timer
is created. It uses the unified time driver provided by the
Supervisor. The choice of direction for the elevator is
programmed by an auxiliary Prolog predicate:

choose_direction :-
driver_elevator_get_level(L),
level(X), X > L,
retract(idle),
driver_elevator_go_up.

choose_direction :-
driver_elevator_get_level(L),
level(X), X < L,
retract(idle),
driver_elevator_go_down.

choose_direction :-
assert(idle).

The timer measuring the time to close doors is imple-
mented as follows:

time_to_close_doors :-
driver_doors_are_blocked,
driver_timer_run_once(

’doors_timer’, ’+5s’).
time_to_close_doors :-

unregister_event_handler(
’timer/doors_timer/alert’),

driver_timer_destroy(’doors_timer’),
driver_doors_close.

Thanks to clean and transparent Prolog syntax the above
code is quite self-explanatory and easily extensible. On
the other hand from this approach point of view it is the
fully executable specification.

HARDWARE SUPPORT

Number of hardware platforms are considered as targets
for the GNU/Linux runtime. These include embedded
PC-like systems, PDAs, and mobile phones. The follow-
ing CPUs will be eventually supported: Motorola/Freescale
m68k/Coldfire/DragonBall, Intel x86, and ARM platforms.
Some preliminary test of a non-trivial platform have been
performed so far. A skeleton Linux runtime system has
been successfully bootstrapped on a Palm IIIx PDA. The
PDA is based on theFreescale 68EZ328 DragonBallEZ
CPU [4, 5]. The Palm IIIx was chosen as a fast prototyp-
ing platform because of its multiple advantages; it:

� provides a platform found in many real-life embed-
ded systems,

� is an easily available and cheap solution,

� is based on a classic, flexible and very well docu-
mented Motorola/Freescale processor,

� has the Flash EEPROM memory that can be repro-
gramed in-circuit via the serial interface provided
by the PDA,

� has number of well documented build-in peripher-
als (such as an LCD touchscreen, the keypad, the
PWM audio, an IrDA and RS232 interfaces),

� is extendable using special extension slot.

In order to fully support the Palm IIIx device, the�CLinux
kernel has been extended by rewriting a bootstrapping
code to boot the system from built-in ROM, improving



ROM generator for Palm devices to provide support for
original PalmOS tools, and providing basic power man-
agement and keypad drivers. Similar work has been done
by LinuxDA project – it is however completely uncoop-
erative towards free software community (it is considered
by some as a violator of the GNU GPL).
Below a�CLinux kernel booting on the Palm IIIx is shown:

68EZ328 DragonBallEZ support (C) 1999 Rt-Control, Inc
uClinux/MC68EZ328
Flat model support (C) 1998,1999

Kenneth Albanowski, D. Jeff Dionne
Palm IIIx support by

Piotr Ziecik <piotr.ziecik@angel.net.pl>
PalmV support by Lineo Inc. <jeff@uClinux.com>
Calibrating delay loop.. ok - 1.28 BogoMIPS
Memory available: 3896k/4079k RAM, 0k/0k ROM

(241k kernel code, 184k data)
Swansea University Computer Society

NET3.035 for Linux 2.0
NET3: Unix domain sockets 0.13 for Linux NET3.035.
uClinux version 2.0.39.uc2 (kosmo@hal9000)

(gcc version 2.95.3 20010315 (release)
(ColdFire patches - 20010318 from

http://fiddes.net/coldfire/)
(uClinux XIP and shared lib patches from

http://www.snapgear.com/))
2 sob lut 18 10:57:58 CET 2006

MC68328 serial driver version 1.00
ttyS0 at 0xfffff900(irq = 64) is a builtin MC68328UART
Ramdisk driver initialized : 16 ramdisks of 4096K size
Blkmem copyright 1998,1999 D. Jeff Dionne
Blkmem copyright 1998 Kenneth Albanowski
Blkmem 1 disk images:
0: 10C5A140-10D2F13F (RO)
VFS: Mounted root (romfs filesystem) readonly.
[RC] => Mounting /proc ...
[RC] => Creating /tmp filesystem ...
[RC] => Mounting /tmp ...
#

Using this platform the SWI-Prolog interpreter has been
successfully run. The results of some basic performance
tests are shown below.

# pl
Welcome to SWI-Prolog (Version 5.4.7)
Copyright (c) 1990-2003 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to
redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- [bench].
% bench compiled 0.65 sec, 4,176 bytes
Yes

2 ?- bench(10).
1336.93 lips for 10 iterations taking 3.71 secs
Yes

Multiplatform Considerations

Extending the hardware support of the embedded runtime
on multiple CPUs and hardware architectures involves
number of issues. Practical multiplatform implementa-
tion needs to take into account the following:
Memory requirements At least 1 MB ROM and 2 MB
RAM is needed. However, if a more powerful control is
to be implemented, more memory is needed for Prolog
stacks. An optimal amount is 4 MB of RAM: about 250–
500 kB for the GNU/Linux runtime, 3 MB for userspace
part (Supervisor and Prolog layer) and 2 MB ROM (for
the Prolog libraries). The RAM memory usage can be
reduced at the cost of ROM consumption, by using XIP
(eXecute In Place) technology. Unfortunately it is not
available on all platforms.

MMU availability All Prolog implementations that have
been tested assume MMU availability. It allows for Pro-
log stacks to grow and shrink dynamically. Without an
MMU the memory needs to be preallocated in order to
prevent memory fragmentation. It is a workable but not
very flexible solution.
PerformanceThe SWI-Prolog has been benchmarked on
the Palm IIIx (2MB ROM, 4 MB RAM, MC68EZ328
CPU at 16 MHz). The measured speed is approximately
1340 lips (Logical Inferences Per Second). For a compar-
ison a modern PC (P4 1.7 GHz) achieves 28.6 Mlips and
PII 450 MHz achieves 5 Mlips. It is worth noting that
modern embedded platforms provide much faster CPUs,
e.g. modern Palms run on 200-416 MHz CPUs.
Peripheral DevicesOn the testing Palm platform the drivers
for the available devices including the keypad (as the in-
put device), and the LCD backlight and PWM (as the out-
put) have been implemented. There is a possibility to
connect any device to the Palm board because of the�C
Bus availability on special socket inside the Palm. These
drivers will serve as prototypes for the future drivers on
other platforms.

CLOSING REMARKS

In the paper an integrated embedded Prolog platform (EPP)
has been presented. The platform plays a key role in prac-
tical deployment of rule-based control systems. The de-
velopment of such systems is supported by an integrated,
hierarchical process, including a new logical knowledge
representation and analysis method calledXTT. The ap-
plication of this method include number of other fields,
where efficient rule-based control systems are used, such
as network security solutions [8].
The platform discussed in the paper integrates the high
level control logic encoded in Prolog, with a GNU/Linux
runtime, suitable for number of embedded platforms. The
paper includes results of practical test on the Palm III
platform running the Motorola/Freescale DragonBall CPU.
The work on the platform should be still considered a
work in progress. Future work will include support for
other hardware platforms, including the ARM family. An-
other important issue that will be addressed is the incor-
poration of a real-time optimized Linux kernel. A full
API making real-time extensions available to the Prolog
control logic, is in the works too.

THE AUTHORS

Dr. Grzegorz J. Nalepa works in Institute of Automatics,
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland
E-mail: gjn@agh.edu.pl
and in
Institute of Physics, Kielce Pedagogical University
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