King rook

Description

Game king and rook vs king.

Source: PROLOG programming for artificial intelligence, 3rd Edition, Harlow, 2001, ISBN 0-201-40375-7.

Download

Program source code: king_rook.pl

Listing

%
%   ?-  pos6( Position),    % Position of Fig. 22.8
%       play( Position).
%
% There are other start positions defined at the end of this file
 
 
% Figure 22.6  A miniture implementation of Advice Language 0.
 
 
% A miniature implementation of Advice Language 0
%
% This program plays a game from a given starting position using knowledge
% represented in Advice Language 0
 
:-  op( 200, xfy, [:, ::]).
:-  op( 220, xfy, ..).
:-  op( 185, fx, if).
:-  op( 190, xfx, then).
:-  op( 180, xfy, or).
:-  op( 160, xfy, and).
:-  op( 140, fx, not).
 
% The following directive forces that calls to undefined predicates just fail
% and not generate errors
 
:- unknown( _, fail).
 
playgame( Pos)  :-                    % Play a game starting in Pos
  playgame( Pos, nil).               % Start with empty forcing-tree 
 
playgame( Pos, ForcingTree)  :-
  show( Pos),
  ( end_of_game( Pos),               % End of game?
  write( 'End of game'), nl, !
  ;
  playmove( Pos, ForcingTree, Pos1, ForcingTree1), !,
  playgame( Pos1, ForcingTree1) 
  ).
 
% Play `us' move according to forcing-tree
 
playmove( Pos, Move .. FTree1, Pos1, FTree1)  :-
   side( Pos, w),% White = `us'
   legalmove( Pos, Move, Pos1),
   nl, write( 'My move: '), 
   showmove( Move).
 
% Read `them' move
 
playmove( Pos, FTree, Pos1, FTree1)  :-
   side( Pos, b),
   write( 'Your move: '),
   read( Move),
   ( legalmove( Pos, Move, Pos1),
     subtree( FTree, Move, FTree1), !         % Move down forcing-tree
     ;
     write( 'Illegal move'), nl,
     playmove( Pos, FTree, Pos1, FTree1)
   ).
 
 
% If current forcing-tree is empty generate a new one
 
playmove( Pos, nil, Pos1, FTree1)  :-
   side( Pos, w),
   resetdepth( Pos, Pos0),% Pos0 = Pos with depth 0
   strategy( Pos0, FTree), !,% Generate new forcing-tree
   playmove( Pos0, FTree, Pos1, FTree1).
 
% Select a forcing-subtree corresponding to Move
 
subtree( FTrees, Move, FTree)  :-
   member( Move .. FTree, FTrees), !.
 
subtree( _, _, nil).
 
strategy( Pos, ForcingTree)  :-           % Find forcing-tree for Pos
   Rule :: if Condition then AdviceList,  % Consult advice-table
   holds( Condition, Pos, _), !,          % Match Pos against precondition
   member( AdviceName, AdviceList),       % Try pieces-of-advice in turn
   nl, write( 'Trying '), write( AdviceName),
   satisfiable( AdviceName, Pos, ForcingTree), !.  % Satisfy AdviceName in Pos 
 
satisfiable( AdviceName, Pos, FTree)  :-
   advice( AdviceName, Advice),           % Retrieve piece-of-advice
   sat( Advice, Pos, Pos, FTree).         % `sat' needs two positions
                                          % for comparison predicates 
 
sat( Advice, Pos, RootPos, FTree)  :-
   holdinggoal( Advice, HG),
   holds( HG, Pos, RootPos),              % Holding-goal satisfied
   sat1( Advice, Pos, RootPos, FTree).
 
sat1( Advice, Pos, RootPos, nil)  :-
   bettergoal( Advice, BG),
   holds( BG, Pos, RootPos), !.           % Better-goal satisfied
 
sat1( Advice, Pos, RootPos, Move .. FTrees)  :-
   side( Pos, w), !,% White = `us'
   usmoveconstr( Advice, UMC),
   move( UMC, Pos, Move, Pos1),           % A move satisfying move-constr.
   sat( Advice, Pos1, RootPos, FTrees).
 
sat1( Advice, Pos, RootPos, FTrees)  :-
   side( Pos, b), !,                      % Black = `them'
   themmoveconstr( Advice, TMC),
   bagof( Move .. Pos1, move( TMC, Pos, Move, Pos1), MPlist),
   satall( Advice, MPlist, RootPos, FTrees).    % Satisfiable in all successors 
 
satall( _, [], _, [] ).
 
satall( Advice, [Move .. Pos | MPlist], RootPos, [Move .. FT | MFTs] )  :-
  sat( Advice, Pos, RootPos, FT),
  satall( Advice, MPlist, RootPos, MFTs).
 
% Interpreting holding and better-goals:
% A goal is an AND/OR/NOT combination of predicate names
 
holds( Goal1 and Goal2, Pos, RootPos)  :-  !,
  holds( Goal1, Pos, RootPos),
  holds( Goal2, Pos, RootPos).
 
holds( Goal1 or Goal2, Pos, RootPos)  :-  !,
  ( holds( Goal1, Pos, RootPos)
    ;
    holds( Goal2, Pos, RootPos)
   ).
 
holds( not Goal, Pos, RootPos)  :-  !,
  not holds( Goal, Pos, RootPos).
 
holds( Pred, Pos, RootPos)  :-
  ( Cond =.. [ Pred, Pos]  % Most predicates do not depend on RootPos
    ;
    Cond =.. [ Pred, Pos, RootPos] ),
   call( Cond).
 
% Interpreting move-constraints
 
move( MC1 and MC2, Pos, Move, Pos1)  :-  !,
  move( MC1, Pos, Move, Pos1),
  move( MC2, Pos, Move, Pos1).
 
move( MC1 then MC2, Pos, Move, Pos1)  :-  !,
   ( move( MC1, Pos, Move, Pos1)
     ;
     move( MC2, Pos, Move, Pos1)
   ).
 
% Selectors for components of piece-of-advice
 
bettergoal( BG : _, BG).
 
holdinggoal( BG : HG : _, HG).
 
usmoveconstr( BG : HG : UMC : _, UMC).
 
themmoveconstr( BG : HG : UMC : TMC, TMC).
 
 
member( X, [X | L] ).
 
member( X, [Y | L] )  :-
   member( X, L).
 
 
 
% Figure 22.7  An AL0 advice-table for king and rook vs king.
% The table consists of two rules and six pieces of advice.
 
 
% King and rook vs. king in Advice Language 0
% Rules
 
edge_rule ::
if
   their_king_edge and kings_close
then
   [ mate_in_2, squeeze, approach, keeproom,
 
 
divide_in_2, divide_in_3 ]. 
 
 
else_rule ::
if
   true
then
   [ squeeze, approach, keeproom, divide_in_2, divide_in_3 ].
 
 
% Pieces-of-advice
 
advice( mate_in_2,
  mate :
  not rooklost and their_king_edge :
  (depth = 0) and legal then (depth = 2) and checkmove :
  (depth = 1) and legal).
 
advice( squeeze,
  newroomsmaller and not rookexposed and
  rookdivides and not stalemate :
  not rooklost :
  (depth = 0) and rookmove :
  nomove).
 
advice( approach,
  okapproachedcsquare and not rookexposed and not stalemate and
  (rookdivides or lpatt) and (roomgt2 or not our_king_edge) :
  not rooklost :
  (depth = 0) and kingdiagfirst :
  nomove).
 
advice( keeproom,
  themtomove and not rookexposed and rookdivides and okorndle and
  (roomgt2 or not okedge) :
  not rooklost :
  (depth = 0) and kingdiagfirst :
  nomove).
 
advice( divide_in_2,
  themtomove and rookdivides and not rookexposed :
  not rooklost :
  (depth < 3) and legal :
  (depth < 2) and legal).
 
advice( divide_in_3,
  themtomove and rookdivides and not rookexposed :
  not rooklost :
  (depth < 5) and legal :
  (depth < 4) and legal).
 
 
% Figure 22.10  Predicate library for king an rook vs king.
% Predicate library for king and rook vs. king
% Position is represented by: Side..Wx : Wy..Rx : Ry..Bx : By..Depth
% Side is side to move (`w' or `b')
% Wx, Wy are X and Y-coordinates of White king
% Rx, Ry are X and Y-coordinates of White rook
% Bx, By are coordinates of Black king
% Depth is depth of position in search tree
% Selector relations
 
side( Side.._, Side).               % Side to move in position
wk( _..WK.._, WK).                  % White king coordinates
wr( _.._..WR.._, WR).               % White rook coordinates
bk( _.._.._..BK.._, BK).            % Black king coordinates
depth( _.._.._.._..Depth, Depth).     % Depth of position in search tree
 
resetdepth( S..W..R..B..D, S..W..R..B..0).% Copy of position with depth 0
 
% Some relations between squares
 
n( N, N1)  :-                       % Neighbour integers `within board'   
  ( N1 is N + 1
    ;
    N1 is N - 1
  ),
  in( N1).
 
in( N)  :-
   N > 0, N < 9.
 
diagngb( X : Y, X1 : Y1)  :-        % Diagonal neighbour squares   
  n( X, X1), n( Y, Y1).
 
verngb( X : Y, X : Y1)  :-          % Vertical neighbour squares 
  n( Y, Y1).
 
horngb( X : Y, X1 : Y)  :-          % Horizontal neighbour squares 
  n( X, X1).
 
ngb( S, S1)  :-                     % Neighbour squares, first diagonal
  diagngb( S, S1);
  horngb( S, S1);
  verngb( S, S1).
 
end_of_game( Pos)  :-
  mate( Pos).
 
 
% Move-constraints predicates
% These are specialized move generators:
% move( MoveConstr, Pos, Move, NewPos)
 
move( depth < Max, Pos, Move, Pos1)  :-
  depth( Pos, D),
  D < Max, !.
 
move( depth = D, Pos, Move, Pos1)  :-
  depth( Pos, D), !.
 
move( kingdiagfirst, w..W..R..B..D, W-W1, b..W1..R..B..D1)  :-
  D1 is D + 1,
  ngb( W, W1),             % `ngb' generates diagonal moves first   
  not ngb( W1, B),         % Must not move into check 
  W1 \== R.               % Must not collide with rook 
 
move( rookmove, w..W..Rx : Ry..B..D, Rx : Ry-R, b..W..R..B..D1)  :-
  D1 is D + 1,
  coord( I),                     % Integer between 1 and 8 
  ( R = Rx : I; R = I : Ry),     % Move vertically or horizontally 
  R \== Rx : Ry,                 % Must have moved 
  not inway( Rx : Ry, W, R).     % White king not in way 
 
move( checkmove, Pos, R-Rx : Ry, Pos1)  :-
  wr( Pos, R),
  bk( Pos, Bx : By),
  (Rx = Bx; Ry = By),            % Rook and Black king in line 
  move( rookmove, Pos, R-Rx : Ry, Pos1).
 
move( legal, w..P, M, P1)  :-
  ( MC = kingdiagfirst; MC = rookmove),
  move( MC, w..P, M, P1).
 
move( legal, b..W..R..B..D, B-B1, w..W..R..B1..D1)  :-
  D1 is D + 1,
  ngb( B, B1),
  not check( w..W..R..B1..D1).
 
legalmove( Pos, Move, Pos1)  :-
  move( legal, Pos, Move, Pos1).
 
check( _..W..Rx : Ry..Bx : By.._ )  :-
  ngb( W, Bx : By)                % King's too close  
  ;
  ( Rx = Bx; Ry = By),
  Rx : Ry \== Bx : By,            % Not rook captured 
  not inway( Rx : Ry, W, Bx : By).
 
inway( S, S1, S1)  :-  !.
 
inway( X1 : Y, X2 : Y, X3 : Y)  :-
  ordered( X1, X2, X3), !.
 
inway( X : Y1, X : Y2, X : Y3)  :-
  ordered( Y1, Y2, Y3).
 
ordered( N1, N2, N3)  :-
  N1 < N2, N2 < N3;
  N3 < N2, N2 < N1.
 
coord(1). coord(2). coord(3). coord(4).
coord(5). coord(6). coord(7). coord(8).
 
% Goal predicates
 
true( Pos).
 
themtomove( b.._ ).           % Black = `them' to move 
 
mate( Pos)  :-
  side( Pos, b),
  check( Pos),
  not legalmove( Pos, _, _ ).
 
stalemate( Pos)  :-
  side( Pos, b),
  not check( Pos),
  not legalmove( Pos, _, _ ).
 
newroomsmaller( Pos, RootPos)  :-
  room( Pos, Room),
  room( RootPos, RootRoom),
  Room < RootRoom.
 
rookexposed( Side..W..R..B.._ )  :-
  dist( W, R, D1),
  dist( B, R, D2),
  ( Side = w, !, D1 > D2 + 1
    ;
    Side = b, !, D1 > D2
  ).
 
okapproachedcsquare( Pos, RootPos)  :-
  okcsquaremdist( Pos, D1),
  okcsquaremdist( RootPos, D2),
  D1 < D2.
 
okcsquaremdist( Pos, Mdist)  :-  
                       % Manhattan distance between WK and critical square
  wk( Pos, WK),
  cs( Pos, CS),        % Critical square 
  manhdist( WK, CS, Mdist).
 
rookdivides( _..Wx : Wy..Rx : Ry..Bx : By.._ )  :-
  ordered( Wx, Rx, Bx), !;
  ordered( Wy, Ry, By).
 
lpatt( _..W..R..B.._ )  :-          % L-pattern 
  manhdist( W, B, 2),
  manhdist( R, B, 3).
 
okorndle( _..W..R.._, _..W1..R1.._ )  :-
  dist( W, R, D),
  dist( W1, R1, D1),
  D =< D1.
 
roomgt2( Pos)  :-
  room( Pos, Room),
  Room > 2.
 
our_king_edge( _..X : Y.._ )  :-               % White king on edge 
  ( X = 1, !; X = 8, !; Y = 1, !; Y = 8).
 
their_king_edge( _..W..R..X : Y.._ )  :-       % Black king on edge 
  ( X = 1, !; X = 8, !; Y = 1, !; Y = 8).
 
kings_close( Pos)  :-             % Distance between kings < 4  
  wk( Pos, WK), bk( Pos, BK),
  dist( WK, BK, D),
  D < 4.
 
rooklost( _..W..B..B.._ ).        % Rook has been captured 
 
rooklost( b..W..R..B.._ )  :-
  ngb( B, R),                     % Black king attacks rook 
  not ngb( W, R).                 % White king does not defend 
 
dist( X : Y, X1 : Y1, D)  :-      % Distance in king moves 
  absdiff( X, X1, Dx),
  absdiff( Y, Y1, Dy),
  max( Dx, Dy, D).
 
absdiff( A, B, D)  :-
  A > B, !, D is A-B;
  D is B-A.
 
max( A, B, M)  :-
  A >= B, !, M = A;
  M = B.
 
manhdist( X : Y, X1 : Y1, D)  :-    % Manhattan distance  
  absdiff( X, X1, Dx),
  absdiff( Y, Y1, Dy),
  D is Dx + Dy.
 
room( Pos, Room)  :-                % Area to which B. king is confined 
  wr( Pos, Rx : Ry),
  bk( Pos, Bx : By),
  ( Bx < Rx, SideX is Rx - 1; Bx > Rx, SideX is 8 - Rx),
  ( By < Ry, SideY is Ry - 1; By > Ry, SideY is 8 - Ry),
  Room is SideX * SideY, !
  ;
  Room is 64.                       % Rook in line with Black king 
 
cs( _..W..Rx : Ry..Bx : By.._, Cx : Cy)  :-    % `Critical square' 
  ( Bx < Rx, !, Cx is Rx - 1; Cx is Rx + 1),
  ( By < Ry, !, Cy is Ry - 1; Cy is Ry + 1).
 
% Display procedures
 
show( Pos)  :-
  nl,
  coord( Y), nl,
  coord( X),
  writepiece( X : Y, Pos),
  fail.
 
show( Pos)  :-
  side( Pos, S), depth( Pos, D),
  nl, write( 'Side= '), write( S),
  write( '  Depth= '), write( D), nl.
 
writepiece( Square, Pos)  :-
  wk( Pos, Square), !, write( 'W');
  wr( Pos, Square), !, write( 'R');
  bk( Pos, Square), !, write( 'B');
  write( '.').
 
showmove( Move)  :-
  write( Move).
 
 
% Some positions
 
pos1( w..3:3..8:8..4:1..0).
 
pos2( w..5:6..4:4..2:2..0).
 
pos3( w..2:2..1:1..8:8..0).
 
pos4( b..2:2..5:5..4:4..1).
 
pos5( w..1:1..4:4..3:3..0). 
 
pos6( w..4:4..5:6..3:2..0).    % Example from Prolog for AI book
 
pos7( w..4:4..2:1..3:2..0).
 
play( Pos)  :-  playgame(Pos).
 
% Query to play a game, for example: ?- pos1(P), playgame(P).
 
 
 
 
 
% Library of frequently used predicates
 
:- op( 900, fy, not).
 
% not Goal): negation as failure; 
%   Note: This is often available as a built-in predicate,
%   often written as prefix operator "\+", e.g. \+ likes(mary,snakes)
 
not Goal  :-
  Goal, !, fail
  ; 
  true.
 
% once( Goal):
%   Produce one solution of Goal only (only the first solution)
 
once( Goal)  :-
  Goal, !.
 
% member( X, List): X is a member of List
 
member(X,[X | _]).                 % X is head of list
 
member( X, [_ | Rest])  :-         
  member( X, Rest).                % X is in body of list
 
%  conc(L1,L2,L3): list L3 is th econcatenation of lists L1 and L2
 
conc( [], L, L).
 
conc( [X | L1], L2, [X | L3])  :-
  conc( L1, L2, L3).
 
% del(X,L0,L): List L is equal to list L0 with X deleted
%   Note: Only one occurrence of X is deleted
 
del( X, [X | Rest], Rest).        % Delete the head
 
del( X, [Y | Rest0], [Y | Rest])  :-
  del( X, Rest0, Rest).
 
%  subset( Set, Subset):  list Set contains all the elements of list Subset 
%    Note: The elements of Subset appear in Set in the same order as in Subset
 
subset( [], []).
 
subset( [First | Rest], [First | Sub])  :-       % Retain First in subset
  subset( Rest, Sub).
 
subset( [First | Rest], Sub)  :-                 % Remove First
  subset( Rest, Sub).
 
%  set_difference( Set1, Set2, Set3):  Set3 is the list representing 
%    the difference of sets represented by lists Set1 and Set2
 
set_difference( [], _, []).
 
set_difference( [X | S1], S2, S3)  :-
  member( X, S2),  !,                            % X in set S2
  set_difference( S1, S2, S3).
 
set_difference( [X | S1], S2, [X | S3])  :-      % X not in S2
  set_difference( S1, S2, S3).
 
%  length( List, Length): Lentgh is the length of List
%    Note: Often provided as built-in predicate
%    The definition below is tail-recursive 
%    It can also be used to generate efficiently list of given length
 
length( L, N)  :-
  length( L, 0, N).
 
length( [], N, N).
 
length( [_ | L], N0, N)  :-
  N1 is N0 + 1,
  length( L, N1, N).
 
 
 
%  max( X, Y, Max): Max = max(X,Y)
 
max( X, Y, Max)  :-
  X >= Y, !, Max = X
  ;
  Max = Y.
 
%  min( X, Y, Min): Min = min(X,Y) 
 
min( X, Y, Min)  :-
  X =< Y, !, Min = X
  ;
  Min = Y.
 
 
% copy_term( T1, T2): T2 is equal to T1 with variables renamed
% This is often available as a built-in predicate
% Procedure below assumes that copy_term is called with T2 uninstantiated
 
copy_term( Term, Copy)  :-
  asserta( term_to_copy( Term)),
  retract( term_to_copy( Copy)), !.

Comments

pl/prolog/pllib/king_rook.txt · ostatnio zmienione: 2017/07/17 08:08 (edycja zewnętrzna)
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0