
Artificial Intelligence.
Knowledge Representation and Reasoning.

Introduction to Constraint Programming with
MiniZinc

Antoni Ligęza

ligeza@agh.edu.pl

AGH University of Science and Technology
Kraków, Poland

Artificial Intelligence – Knowledge Representation and Reasoning
Kraków – 2021

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 1 / 87

Basic Principles

Welcome to AI!
Welcome to AI - KRR - CP!
Start: Constraint Programming with MiniZinc

1 Lectures – invitation!
2 Course – no final exam.
3 Invitation to active participation - presentations.Z
4 Questions are welcome!
5 Support materials .pdf will be provided. See: https://ai.ia.agh.edu.pl
6 No recording allowed!
7 In case of problems – contact me.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 2 / 87

https://ai.ia.agh.edu.pl

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 3 / 87

Some Books

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 4 / 87

Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 5 / 87

Basic Literature: Constraints

Krzysztof R. Apt: Principles of Constraint Programming. Cambridge
University Press, Cambridge, UK, 2006.

Krzysztof R. Apt and Mark Wallace: Constraint Logic Programming
Using ECLiPSe. Cambridge University Press, Cambridge, UK, 2006.

Rina Dechter: Constraint Processing. Morgan Kaufmann Publishers, San
Francisco, CA, 2003.

Antoni Niederliński: A Quick and Gentle Guide to Constraint Logic
Programming via ECLiPSe. PKJS, Gliwice, 2010
(http://www.pwlzo.pl/).

Roman Bartak: On-line Guide to Constraint Programming.
http://kti.mff.cuni.cz/ bartak/constraints/index.html.

http:
//en.wikibooks.org/wiki/Prolog/Constraint_Logic_Programming.

http://eclipseclp.org/

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 6 / 87

http://www.pwlzo.pl/
http://en.wikibooks.org/wiki/Prolog/Constraint_Logic_Programming
http://en.wikibooks.org/wiki/Prolog/Constraint_Logic_Programming
http://eclipseclp.org/

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 7 / 87

The Role of Abduction in CP

Some loosely provocative questions and
statements...

abduction: what, why and where — what
for?

abduction: a method of logical inference
(but invalid!),

abduction vs. deduction,

abduction: primary method used by
Sherlock Holmes!

abduction: inevitable ambiguity
(potential/admissible solutions; many of
them),

abduction: more constraints — better
abduction,

abduction + constraints + SAT (minimal
models).

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 8 / 87

Presentation Outline

Abduction

Abduction — principal way of problem solving — generation of hypotheses,

Abduction — hypotheses generation performed with backtracking search,

Abduction — produces numerous, admissible solutions

Abduction: Logical model

α =⇒ β, β

α

HYP+ ∪ HYP− ∪ KB |= OBS+ ∪ OBS−

HYP+ ∪ HYP− ∪ KB ∪ OBS+ ∪ OBS− 6|= ⊥

¡handout:0¿

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

An intuitive example: find explanations for wet street

rain −→ water
sprinkler −→ water
snow ∧ temperature −→ water

water −→ wet street,
cleaning −→ wet street
oil −→ wet street

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 9 / 87

The role of constraints in abduction

Abductive problem without constraints

X ,Y ,Z - variables, X ,Y ∈ {0, 1, 2, . . . , 9}, Z ∈ {0, 1, 2, . . . , 18},
system: Z = X + Y

Y

+

X

Z = 13

Observed: Z = 13
Possible explanations:

(X = 4 and Y = 9),
(X = 5 and Y = 8),
... ,
(X = 9 and Y = 4).

6 admissible solutions.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 10 / 87

The role of constraints in abduction

Abductive problem with constraints

X ,Y ,Z - variables, X ,Y ,Z ∈ {0, 1, 2, . . . , 9},

Z = X + Y

Constraint:
Y < X − 3

Observed: Z = 13

Possible explanations: (X = 9 and Y = 4),

1 admissible solution.

Conclusion

CONSTRAINTS can refine results of ABDUCTION; less models generated,

propagation of CONSTRAINTS can reduce computational effort,

ABDUCTION + CONSTRAINTS = CONSTRUCTIVE ABDUCTION

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 11 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 12 / 87

Constraint Satisfaction Problems: Examples

Figure: Sudoku: An example Constraint Satisfaction Problem

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 13 / 87

Constraint Satisfaction Problems: Examples

Figure: Sudoku: Yet another example Constraint Satisfaction Problem
Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 14 / 87

Constraint Satisfaction Problems: Examples

Figure: An example Constraint Satisfaction Problem

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 15 / 87

Constraint Satisfaction Problems: Examples

Figure: The unique solution of the example Constraint Satisfaction Problem

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 16 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Constraint (Logic) Programming

Declarative Programming + Multi-Purpose Models:
simple, transparent statement; practical problem,
zero, one, or many solutions,
problem: combinatorial explosion.

Decision factors in CP/CLP:
variable — which variable too choose,
value — which value to choose,
propagation — how to propagate constraints,
heuristics — what heuristics can be used.

CP/CLP basic solution paradigm:
select a variable,
select a value,
propagate constraints,
if conflict — backtrack; if unique — return solution; else — loop.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 17 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 18 / 87

Constraint Satisfaction Problem

CSP statement

X = {X1,X2, . . . ,Xk} — a set of variables,

D = {D1,D2, . . . ,Dk} — their domains,
C = {(Si ,Ri) : i = 1, 2, . . . , n} — constraints,

Si — scope — a selection of variables,
Ri — relation defined over Cartesian Product of domains appropriate for the
scope variables,

CSP solution

A solution to CSP given by (X ,D,C) is any assignment of values to variables of
X of the form

{X1 = d1,X2 = d2, . . . ,Xk = dk},

such that di ∈ Di , and for any constraint in (Si ,Ri) ∈ C , Ri is satisfied by the
appropriate projection of the solution vector (d1, d2, . . . , dk) over variables of Si .

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 19 / 87

CP/CSP — Characteristics; CSP vs. OPT

CP vs. OPT

CSP: first solution counts,

OPT:best solution counts.

Binary vs. finite domains; SAT

SAT: binary domains (0 or 1; true or false),

CSP: finite discrete domains.

CSP: Problems

large number of variables,

large domains,

numerous constraints,

different types of constraints,

unpredictable, irregular, hard to trace.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 20 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 21 / 87

Introduction to MiniZinc

Some important ideas:

MiniZinc belongs to Declarative Programming Paradigm,

MiniZinc provides a high=level language for constraint specification,

the constraints are translated into FlatZinc model,

the constraints can be processed with several lower-level tools (backend
solvers; model once, solve everywhere.

the same MODEL can be processed with several data/goals (backend
solvers; model once, solve what-you-need.

Composition of MiniZinc program:

parameters definition — if any,

variables definition,

constraints definitions,

objective function definition — if any (other than SAT),

solve command and parameters,

output specification.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 22 / 87

A Map Coloring Problem

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Figure: A Map of Australia

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 23 / 87

A Map Co-louring Problem Solved

Figure: A Map of Australia

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 24 / 87

What about Constraints?

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Victoria

WA

NT

SA

Q

NSW

V

T

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 25 / 87

A Map Coloring Example I

% Colouring Australia using nc colours
int: nc = 3; % a single parameter

% variables
var 1..nc: wa; var 1..nc: nt; var 1..nc: sa; var 1..nc: q;
var 1..nc: nsw; var 1..nc: v; var 1..nc: t;

%constraints
constraint wa != nt;
constraint wa != sa;
constraint nt != sa;
constraint nt != q;
constraint sa != q;
constraint sa != nsw;
constraint sa != v;
constraint q != nsw;
constraint nsw != v;

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 26 / 87

A Map Coloring Example II

% solution type declaration
solve satisfy;

% output specification
output ["wa=", show(wa), "\t nt=", show(nt),

"\t sa=", show(sa), "\n", "q=", show(q),
"\t nsw=", show(nsw), "\t v=", show(v), "\n",
"t=", show(t), "\n"];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 27 / 87

Code Specification: Some Basic Ideas

a parameter — type and value,

a parameter cannot be changed (but re-specified for a next run),

parameters can be specified in a separate file, given by hand, or modified
before compilation,

supported types: int, float, bool, string; also array, and set ,

a variable is assigned domain (or type),

variables can be: bool, int, float, set,

arrays of variables are accessible,

a variable can be instantiated with a value of an appropriate type only!

constraints (basic): = (==), >, <, <=, >=,

constraints are Boolean expressions – what does this mean?,

solve satisfy; defines the goal,

output specification (long strings can be split over lines with the ++ for
concatenation).

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 28 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 29 / 87

Example: SEND+MORE=MONEY

Figure: An example Constraint
Satisfaction Problem

8 variables: S, E, N, D, M, O, R, Y,

10-values in each domain,

alldifferent(S, E, N, D, M, O, R, Y),

basic search-space size: 108,

reduced search-space size:
9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 = 362880

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 30 / 87

A simple CLP code I

sendmoremoney(Vars) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
S #\= 0,
M #\= 0,
all_different(Vars),

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y.

solve(Vars):- Vars=[S,E,N,D,M,O,R,Y],
sendmoremoney([S,E,N,D,M,O,R,Y]),
label(Vars).

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 31 / 87

Pretty good results! I

?- time(sendmoremoney(V)).
% 6,758 inferences, 0.00 CPU in 0.00 seconds (0% CPU, Infinite Lips)
V = [9, _G11470, _G11473, _G11476, 1, 0, _G11485, _G11488],
_G11470 in 4..7,
all_different([_G11470, _G11473, _G11476, _G11485, _G11488, 0, 1, 9]),
1000*9+91*_G11470+ -90*_G11473+_G11476+ -9000*1+ -900*0+10*_G11485+ -1*_G11488#=0,
_G11473 in 5..8,
_G11476 in 2..8,
_G11485 in 2..8,
_G11488 in 2..8.

?- time(solve(V)).
% 10,088 inferences, 0.01 CPU in 0.00 seconds (308% CPU, 1008800 Lips)
V = [9, 5, 6, 7, 1, 0, 8, 2].

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 32 / 87

MiniZinc Coding I

include "alldifferent.mzn";

var 1..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 1..9: M;
var 0..9: O;
var 0..9: R;
var 0..9: Y;

constraint 1000 * S + 100 * E + 10 * N + D
+ 1000 * M + 100 * O + 10 * R + E

= 10000 * M + 1000 * O + 100 * N + 10 * E + Y;

constraint alldifferent([S,E,N,D,M,O,R,Y]);

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 33 / 87

MiniZinc Coding II

solve satisfy;

output [" ",show(S),show(E),show(N),show(D),"\n",
"+ ",show(M),show(O),show(R),show(E),"\n",
"= ",show(M),show(O),show(N),show(E),show(Y),"\n"];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 34 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 35 / 87

A Constraint Optimization Problme:
SEND+MOST=MONEY I

What about the following Constraint Optimization Problem:

SEND
+MOST
=======
MONEY

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 36 / 87

MiniZinc Coding: SEND+MOST=MONEY I

What about the following Constraint Optimization Problem:

include "alldifferent.mzn";
var 1..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 1..9: M;
var 0..9: O;
var 0..9: T;
var 0..9: Y;

constraint 1000 * S + 100 * E + 10 * N + D
+ 1000 * M + 100 * O + 10 * S + T

= 10000 * M + 1000 * O + 100 * N + 10 * E + Y;
constraint alldifferent([S,E,N,D,M,O,T,Y]);

solve maximize 10000 * M + 1000 * O + 100 * N + 10 * E + Y;

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 37 / 87

MiniZinc Coding: SEND+MOST=MONEY I

include "alldifferent.mzn";
var 1..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 1..9: M;
var 0..9: O;
var 0..9: T;
var 0..9: Y;
var int: sum;
constraint 1000 * S + 100 * E + 10 * N + D

+ 1000 * M + 100 * O + 10 * S + T
= 10000 * M + 1000 * O + 100 * N + 10 * E + Y;

constraint alldifferent([S,E,N,D,M,O,T,Y]);
constraint sum = 10000 * M + 1000 * O + 100 * N + 10 * E + Y;
solve maximize sum;
output["The sum of MONEY = ", show(sum)];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 38 / 87

Integer Programming

Two types of cakes

two types of cakes: b = banana, c = chocolate; b,c - output variables,

each of them uses specific amount of limited resources,

each of them provides some profit,

the goal is to maximize the profit.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 39 / 87

MiniZinc Coding: Banana & Chocolate Cakes I

% Baking cakes for the school fete

var 0..100: b; % no. of banana cakes
var 0..100: c; % no. of chocolate cakes

% flour
constraint 250*b + 200*c <= 4000;
% bananas
constraint 2*b <= 6;
% sugar
constraint 75*b + 150*c <= 2000;
% butter
constraint 100*b + 150*c <= 500;
% cocoa
constraint 75*c <= 500;

% maximize our profit

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 40 / 87

MiniZinc Coding: Banana & Chocolate Cakes II

solve maximize 400*b + 450*c;

output ["no. of banana cakes = ", show(b), "\n",
"no. of chocolate cakes = ", show(c), "\n"];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 41 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 42 / 87

Using Data files

In order to change the parameters of the model it is convenient to specify them
in a data-file (.dzn).

a data-file contains a set of pre-declared parameters,

there can be several files with different data,

hence, the same model can be re-used in an easy way,

it is reasonable to check the imported parameters,

a check is done with the assert(<condition>,<output>) predicate (this
is called Defensive Programming),

assert acts as Boolean expression.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 43 / 87

Example MiniZinc Code with Data-file I

% Baking cakes for the school fete (with data file)

int: flour; %no. grams of flour available
int: banana; %no. of bananas available
int: sugar; %no. grams of sugar available
int: butter; %no. grams of butter available
int: cocoa; %no. grams of cocoa available

constraint assert(flour >= 0,"Invalid datafile: " ++
"Amount of flour is non-negative");

constraint assert(banana >= 0,"Invalid datafile: " ++
"Amount of banana is non-negative");

constraint assert(sugar >= 0,"Invalid datafile: " ++
"Amount of sugar is non-negative");

constraint assert(butter >= 0,"Invalid datafile: " ++
"Amount of butter is non-negative");

constraint assert(cocoa >= 0,"Invalid datafile: " ++

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 44 / 87

Example MiniZinc Code with Data-file II

"Amount of cocoa is non-negative");

var 0..100: b; % no. of banana cakes
var 0..100: c; % no. of chocolate cakes

% flour
constraint 250*b + 200*c <= flour;
% bananas
constraint 2*b <= banana;
% sugar
constraint 75*b + 150*c <= sugar;
% butter
constraint 100*b + 150*c <= butter;
% cocoa
constraint 75*c <= cocoa;

% maximize our profit
solve maximize 400*b + 450*c;

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 45 / 87

Example MiniZinc Code with Data-file III

output ["no. of banana cakes = ", show(b), "\n",
"no. of chocolate cakes = ", show(c), "\n"];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 46 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 47 / 87

Model with Real Numbers

Some ideas concerning Constraint Programming and Optimization with real
numbers (floats).

the properties of the model change drastically,

it may be necessary to use different solver! (in our case G12 MIP)

if analytic model is accessible - try it!

Linear Programming and Simplex may be a solution,

Mixed Integer-Linear Programming models are hard,

the same model can be used for answering different questions:

A Loan

P - amount borrowed, I – interest rate, R – rate (4 rates), B – balance

given I, P, and R (rate), how much is the final balance?

given I, P, and ensuring B4=0 (0 balance), what should be the rates?

given I, R, and ensuring B4=0 (0 balance), how much can I borrow (P)?

the model does not change; only the input parameters.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 48 / 87

MiniZinc Coding – a Loan Example I

% variables
var float: R; % quarterly repayment
var float: P; % principal initially borrowed
var 0.0 .. 10.0: I; % interest rate

% intermediate variables
var float: B1; % balance after one quarter
var float: B2; % balance after two quarters
var float: B3; % balance after three quarters
var float: B4; % balance owing at end

constraint B1 = P * (1.0 + I) - R;
constraint B2 = B1 * (1.0 + I) - R;
constraint B3 = B2 * (1.0 + I) - R;
constraint B4 = B3 * (1.0 + I) - R;

solve satisfy;

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 49 / 87

MiniZinc Coding – a Loan Example II

output [
"Borrowing ", show_float(0, 2, P),
" at ", show(I*100.0),
"% interest, and repaying ", show_float(0, 2, R),
"\nper quarter for 1 year leaves ",
show_float(0, 2, B4), " owing\n"

];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 50 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 51 / 87

Why Arrays and Sets?

the number of variables can change with the size of the problem:
e.g. number of products (array: quantity of product),
e.g. number of rates to be paid (array: amount of rate),
e.g. number of components/blocks (array: component value),

array can be of one, two, and many dimensions,

notation temp[3,7]; a variable associated with the position (3,7) on a
grid,

one can define a single constraint over an array – all the variables!

array[1..5] = [1,3,5,7,11] – one-dimensional array,

array[1..3,1..4] = [|1,2,3|,|4,5,6|,|7,8,9|,|10,11,12|] –
two-dimensional 4× 3 array,

constraint forall(i in 1..w-1)(temp[i,h] = right); –
–example constraint over a border,

list comprehension: special form of list specification, e.g. forall([a[i]
!= a[j] | i,j in 1..3 where i < j])

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 52 / 87

Laplace: a Visualization

Figure: A Visualization of 2-D Temperature Distribution

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 53 / 87

MiniZinc Coding: Laplace I

int: w = 4;
int: h = 4;

% arraydec
array[0..w,0..h] of var float: t; % temperature at point (i,j)
var float: left; % left edge temperature
var float: right; % right edge temperature
var float: top; % top edge temperature
var float: bottom; % bottom edge temperature

% equation
% Laplace equation: each internal temp.
% is average of its neighbours
constraint forall(i in 1..w-1, j in 1..h-1)(
4.0*t[i,j] = t[i-1,j] + t[i,j-1] + t[i+1,j] + t[i,j+1]);

% sides
% edge constraints

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 54 / 87

MiniZinc Coding: Laplace II

constraint forall(i in 1..w-1)(t[i,0] = left);
constraint forall(i in 1..w-1)(t[i,h] = right);
constraint forall(j in 1..h-1)(t[0,j] = top);
constraint forall(j in 1..h-1)(t[w,j] = bottom);
% corners
% corner constraints
constraint t[0,0]=0.0;
constraint t[0,h]=0.0;
constraint t[w,0]=0.0;
constraint t[w,h]=0.0;
left = 0.0;
right = 0.0;
top = 100.0;
bottom = 0.0;

solve satisfy;

output [show_float(6, 2, t[i,j]) ++

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 55 / 87

MiniZinc Coding: Laplace III

if j == h then "\n" else " " endif |
i in 0..w, j in 0..h

];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 56 / 87

Aggregation Functions

Arithmetic aggregation

sum() – summation of elements on a list,

product() – multiplication of elements on a list,

min() – minimal element from a list,

max() – maximal element on a list.

Logical aggregation (on arrays of Boolean expressions)

forall – logical conjunction of expressions of an array,

exists – logical disjunction of expressions of an array.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 57 / 87

Using Sets

Sets are (unordered!) collections of items. Some features and use:

sets can be of the following types: integers, floats, and Booleans,

sets can be (and typically are (ordered!) range expressions of the form:
FIRST..LAST,

set of int: Products = 1..nproducts – declaration of a set of int,

sets of literals are allowed {e1, . . . , ek},
standard operations: in, subset, superset, union, inter, diff,
symdiff; card.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 58 / 87

MiniZinc Coding: Cakes Revisited I

% Number of different products
int: nproducts;
set of int: Products = 1..nproducts;
% profit per unit for each product
array[Products] of int: profit;
array[Products] of string: pname;
% Number of resources
int: nresources;
set of int: Resources = 1..nresources;
% amount of each resource available
array[Resources] of int: capacity;
array[Resources] of string: rname;

% units of each resource required to produce 1 unit of product
array[Products, Resources] of int: consumption;
constraint assert(forall (r in Resources, p in Products)

(consumption[p,r] >= 0), "Error: negative consumption");

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 59 / 87

MiniZinc Coding: Cakes Revisited II

% bound on number of Products
int: mproducts = max (p in Products)

(min (r in Resources where consumption[p,r] > 0)
(capacity[r] div consumption[p,r]));

% Variables: how much should we make of each product
array[Products] of var 0..mproducts: produce;
array[Resources] of var 0..max(capacity): used;

% Production cannot use more than the available Resources:
constraint forall (r in Resources) (
used[r] = sum (p in Products)(consumption[p, r] * produce[p])

/\ used[r] <= capacity[r]
);

% Maximize profit
solve maximize sum (p in Products) (profit[p]*produce[p]);

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 60 / 87

MiniZinc Coding: Cakes Revisited III

output [show(pname[p]) ++ " = " ++ show(produce[p]) ++ ";\n" |
p in Products] ++
[show(rname[r]) ++ " = " ++ show(used[r]) ++ ";\n" |
r in Resources];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 61 / 87

Global Constraints I

include "alldifferent.mzn";

var 1..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 1..9: M;
var 0..9: O;
var 0..9: R;
var 0..9: Y;

constraint 1000 * S + 100 * E + 10 * N + D
+ 1000 * M + 100 * O + 10 * R + E

= 10000 * M + 1000 * O + 100 * N + 10 * E + Y;

constraint alldifferent([S,E,N,D,M,O,R,Y]);

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 62 / 87

Global Constraints II

solve satisfy;

output [" ",show(S),show(E),show(N),show(D),"\n",
"+ ",show(M),show(O),show(R),show(E),"\n",
"= ",show(M),show(O),show(N),show(E),show(Y),"\n"];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 63 / 87

Conditional Expressions

Conditional expressions: if COND then EXPR1 else EXPR2 endif;
Example:
int: r = if y != 0 then x div y else 0 endif;
Example – Sudoku initialization:
constraint forall(i,j in PuzzleRange)
(if start[i,j] > 0 then puzzle[i,j] = start[i,j] else true endif
);

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 64 / 87

MiniZinc Coding: Sudoku I

include "alldifferent.mzn";

int: S;
int: N = S * S;
int: digs = ceil(log(10.0,int2float(N))); % digits for output

set of int: PuzzleRange = 1..N;
set of int: SubSquareRange = 1..S;

array[1..N,1..N] of 0..N: start; %% initial board 0 = empty
array[1..N,1..N] of var PuzzleRange: puzzle;

% fill initial board
constraint forall(i,j in PuzzleRange)(
if start[i,j] > 0 then puzzle[i,j] = start[i,j]
else true endif);

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 65 / 87

MiniZinc Coding: Sudoku II

% All different in rows
constraint forall (i in PuzzleRange) (
alldifferent([puzzle[i,j] | j in PuzzleRange]));

% All different in columns.
constraint forall (j in PuzzleRange) (
alldifferent([puzzle[i,j] | i in PuzzleRange]));

% All different in sub-squares:
constraint
forall (a, o in SubSquareRange)(
alldifferent([puzzle[(a-1) *S + a1, (o-1)*S + o1] |

a1, o1 in SubSquareRange]));

solve satisfy;

output [show_int(digs,puzzle[i,j]) ++ " " ++
if j mod S == 0 then " " else "" endif ++

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 66 / 87

MiniZinc Coding: Sudoku III

if j == N /\ i != N then
if i mod S == 0 then "\n\n" else "\n" endif

else "" endif
| i,j in PuzzleRange] ++ ["\n"];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 67 / 87

Complex Constraints I

/\ – concjunction,
\/ – disjunction,
-> – implication,
<- – only-if (implication to the left),
<-> – if-and-only-if (equivalence),
not – negation.

Example:

constraint s1 + d1 <= s2 \/ s2 + d2 <= s1;

s – start of a task,
d – duration of a task
(execution of tasks cannot overlap on a single machine)
The Job-Shop example:

a set of job must be completed,
each job consists of sequential tasks,
the tasks must be executed in order,
and on separate machines.

bool2int – a function convert Boolean to integer (true = 1, false = 0).
Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 68 / 87

MiniZinc Coding: A Job-Shop Example I

int: jobs; % no of jobs
int: tasks; % no of tasks per job
array [1..jobs,1..tasks] of int: d; % task durations
int: total = sum(i in 1..jobs, j in 1..tasks)

(d[i,j]); % total duration
int: digs = ceil(log(10.0,int2float(total))); % digits for output
array [1..jobs,1..tasks] of var 0..total: s; % start times
var 0..total: end; % total end time

constraint %% ensure the tasks occur in sequence
forall(i in 1..jobs) (
forall(j in 1..tasks-1)
(s[i,j] + d[i,j] <= s[i,j+1]) /\

s[i,tasks] + d[i,tasks] <= end
);

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 69 / 87

MiniZinc Coding: A Job-Shop Example II

constraint %% ensure no overlap of tasks
forall(j in 1..tasks) (
forall(i,k in 1..jobs where i < k) (
s[i,j] + d[i,j] <= s[k,j] \/
s[k,j] + d[k,j] <= s[i,j]

)
);

solve minimize end;

output ["end = ", show(end), "\n"] ++
[show_int(digs,s[i,j]) ++ " " ++
if j == tasks then "\n" else "" endif |
i in 1..jobs, j in 1..tasks];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 70 / 87

Example: Stable Marriage

In MiniZinc decision variables can be used for array access.

Stable Marriage

Consider the (old-fashioned) stable marriage problem. We have n (straight)
women and n (straight) men. Each man has a ranked list of women and vice
versa. We want to find a husband/wife for each women/man so that all
marriages are stable in the sense that:

whenever m prefers another women o to his wife w, o prefers her husband to
m, and

whenever w prefers another man o to her husband m, o prefers his wife to w.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 71 / 87

MiniZinc Coding: Stable Marriage I

int: n;

set of int: Men = 1..n;
set of int: Women = 1..n;

array[Women, Men] of int: rankWomen;
array[Men, Women] of int: rankMen;

array[Men] of var Women: wife;
array[Women] of var Men: husband;

% assignment
constraint forall (m in Men) (husband[wife[m]]=m);
constraint forall (w in Women) (wife[husband[w]]=w);
% ranking
constraint forall (m in Men, o in Women) (

rankMen[m,o] < rankMen[m,wife[m]] ->

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 72 / 87

MiniZinc Coding: Stable Marriage II

rankWomen[o,husband[o]] < rankWomen[o,m]);

constraint forall (w in Women, o in Men) (
rankWomen[w,o] < rankWomen[w,husband[w]] ->
rankMen[o,wife[o]] < rankMen[o,w]);

solve satisfy;

output ["wives= ", show(wife),"\n", "husbands= ", show(husband), "\n"];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 73 / 87

MiniZinc Coding I

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 74 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 75 / 87

MiniZinc Coding: Symmetry Braking I

int: n = 5; % number of variables in the sequence
int: range = 10; % range of variables
int: sum = 20; % the required sum
array[1..n] of var 1..range: s;

constraint sum (i in 1..n)(s[i]) = sum;

% constraint forall (i in 1..n-1) (s[i] < s[i+1]);

solve satisfy;

output ["s = ", show(s), ";\n"] ;

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 76 / 87

Symmetry Braking and Higher-Order Constraints

Magic Series Problem

Given n, find a sequence (a list) of numbers

s = [s0, s1, . . . , sn−1]

such that:
si = Number of occurrences(i)

An example is s = [1, 2, 1, 0].

Higher-order constraint: the function bool2int takes as its argument an
arbitrary boolean expression; the expression is evaluated to true/false and the
results is converted to integer.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 77 / 87

MiniZinc Coding: Magic Series Example I

int: n;
array[0..n-1] of var 0..n: s;

constraint forall(i in 0..n-1) (
s[i] = (sum(j in 0..n-1)(bool2int(s[j]=i))));

solve satisfy;

output ["s = ", show(s), ";\n"] ;

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 78 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 79 / 87

A Simple Knapsack Problem I

Set Valued Variables – a decision variable can take set as its value.
Example declaration:

var set of Items: knapsack;

Note: the var keyword comes before the set declaration indicating that the set
itself is the decision variable. This contrasts with an array in which the var
keyword qualifies the elements in the array rather than the array itself since the
basic structure of the array is fixed, i.e. its index set.

Simple Knapsack Problem

Given a set of items, find optimal packing of a knapsack, so that:

weight constraint: the total weight of the selected items is still under the
knapsack capability,

max of value: the total value of the selected elements is maximal.

Note: We do not know the final number of selected elements.
Note: No direct iteration over sets is admissible! The code below will result with
an error.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 80 / 87

A Simple Knapsack Problem II

constraint sum (i in knapsack) (weights[i]) <= capacity;

solve maximize sum (i in knapsack) (profits[i]) ;

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 81 / 87

MiniZinc Coding: Knapsack Problem I

int: n;
set of int: Items = 1..n;
int: capacity;

array[Items] of int: profits;
array[Items] of int: weights;

% setvar
var set of Items: knapsack;
% capacity
constraint sum (i in Items)

(bool2int(i in knapsack)*weights[i]) <= capacity;

solve maximize sum (i in Items) (bool2int(i in knapsack)*profits[i]) ;

output [show(knapsack),"\n"];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 82 / 87

Presentation Outline

1 Some Books

2 The Role of Abduction in CP

3 Introduction: An Example to Start

4 Constraint Satisfaction Problems: Examples

5 Constraint Satisfaction Problem

6 Introduction to MiniZinc

7 Example: SEND+MORE=MONEY

8 Constraint Optimization Examples

9 Using Data files

10 Constraint Programming with Real Numbers

11 More Complex Structures: Arrays and Sets

12 Symmetry Braking and Higher-Order Constraints

13 Set Constraints

14 Cumulative Constraint

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 83 / 87

Cumulative Use of Resources I

The cumulative constraint is used for describing cumulative resource usage.
Declaration:

cumulative(array[int] of var int: s, array[int] of var int: d,
array[int] of var int: r, var int: b)

Requires that a set of tasks given by start times s, durations d, and resource
requirements r, never require more than a global resource bound b at any one
time.

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 84 / 87

MiniZinc Coding: The Moving Example I

include "cumulative.mzn";

int: n; % number of objects;
set of int: OBJECTS = 1..n;
array[OBJECTS] of int: duration; % duration to move
array[OBJECTS] of int: handlers; % number of handlers required
array[OBJECTS] of int: trolleys; % number of trolleys required

int: available_handlers;
int: available_trolleys;
int: available_time;

array[OBJECTS] of var 0..available_time: start;
var 0..available_time: end;

constraint cumulative(start, duration, handlers, available_handlers);
constraint cumulative(start, duration, trolleys, available_trolleys);

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 85 / 87

MiniZinc Coding: The Moving Example II

constraint forall(o in OBJECTS)(start[o] +duration[o] <= end);

solve minimize end;

output ["start = ", show(start), "\nend = ", show(end), "\n"];

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 86 / 87

MiniZinc Coding: The Moving Data I

n = 8;
% piano, fridge, double bed, single bed, wardrobe, chair, chair, table

duration = [60, 45, 30, 30, 20, 15, 15, 15];
handlers = [3, 2, 2, 1, 2, 1, 1, 2];
trolleys = [2, 1, 2, 2, 2, 0, 0, 1];

available_time = 180;
available_handlers = 4;
available_trolleys = 3;

Antoni Ligęza (AGH-UST) AI-KRR-2021 AI-KRR-2021 87 / 87

	Some Books
	The Role of Abduction in CP
	Introduction: An Example to Start
	Constraint Satisfaction Problems: Examples
	Constraint Satisfaction Problem
	Introduction to MiniZinc
	Example: SEND+MORE=MONEY
	Constraint Optimization Examples
	Using Data files
	Constraint Programming with Real Numbers
	More Complex Structures: Arrays and Sets
	Symmetry Braking and Higher-Order Constraints
	Set Constraints
	Cumulative Constraint

