
AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, AUTOMATICS, COMPUTER SCIENCE

AND BIOMEDICAL ENGINEERING

Diploma Project

Selected Tools for Grammatical Evolution. Analysis and Applications.

Wybrane narzędzia do ewolucji gramatycznej. Analiza i zastosowania.

Author: Jakub Skrzyński
Degree programme: Computer Science
Supervisor: prof. dr hab. inż. Antoni Ligęza

Kraków, 2024

SUMMARY

The aim of this thesis was to analyze selected software tools for Grammatical Evolution and

present their evaluation and numerical experiments. Thesis can be conceptually divided into 6

parts covering different areas of the topic. First part, being chapters 1 - 3, is devoted for explain-

ing basic concepts of Grammatical Evolution giving the reader broad view of the method and

possible challenges that may arise while developing the model. Following part, chapters 4 and

5 contains information on needs of users and discussion on conducting a comparison between

tools. Third part, chapters 6 - 9, describes in detail 3 tools that were chosen based on maturity

level, continuity of maintenance and quality of documentation and sources describing them.

Additionally in this part there are short descriptions of other tools that are worth of attention.

Chapters 10 and 11 describe shortly possible areas of applications. Next, chapters 12 - 17 con-

tain experiments showing example usage of tools and discussing their efficiency and accuracy

as well as a general level of user experience. Thesis ends with conclusions on the conducted

comparison and ideas for further work regarding topic of GE tools, presented in chapter 18.

STRESZCZENIE

Celem pracy była analiza wybranych narzędzi programowych ewolucji gramatycznej,

przedstawienie ich oceny, oraz eksperymentów numerycznych. Z pracy można wydzielić 6

części, z których każda omawia poszczególne zagadnienie z tematu. Pierwsza część, złożona z

rozdziałów 1 - 3, poświęcona jest wyjaśnieniu podstawowych pojęć dotyczących ewolucji gra-

matycznej, dając czytelnikowi szeroki pogląd na metodę i możliwe wyzwania, które mogą po-

jawić się podczas opracowywania modelu z jej użyciem. Kolejna część, składająca się z rozdzi-

ałów 4 i 5, zawiera dyskusję na temat metod przeprowadzenia porównania narzędzi, oraz na

temat potrzeb użytkowników. Część trzecia, na którą składają się rozdziały 6 - 9, szczegółowo

opisuje 3 narzędzia, które zostały wybrane ze względu na poziom rozwoju, ciągłość aktualizacji

i wsparcia oraz jakość dokumentacji i źródeł je opisujących. Dodatkowo w tej części znajdują

się krótkie opisy innych, wartych uwagi, narzędzi. W dalszej części, w rozdziałach 10 i 11,

krótko opisano możliwe obszary zastosowań. Część piąta, składająca się z rozdziałów 12 - 17,

zawiera eksperymenty pokazujące przykładowe wykorzystanie narzędzi oraz dane na temat ich

efektywności i dokładności, a także ogólny poziom zadowolenia użytkownika. Pracę kończą

wnioski z przeprowadzonego porównania oraz potencjalne dalsze kierunki eksploracji tematu

narzędzi GE, zawarte w rozdziale 18.

4

J. Skrzyński Selected Tools for Grammatical Evolution.

5

Niniejszą pracę pragnę zadedykować moim wspaniałym Rodz-

icom Ewie i Andrzejowi Skrzyńskim, którzy wspierali mnie i

motywowali w czasie przygotowywania niniejszej pracy oraz w

czasie całych studiów.

Serdecznie dziękuję Panu prof. dr hab. inż. Antoniemu Ligęzie

za zainspirowanie mnie do podjęcia tematu tej pracy, okazaną

pomoc, udzielone cenne wskazówki, dostarczenie niezbędnych

materiałów oraz informacji, stałe czuwanie nad właściwym

kierunkiem pracy, duże zaangażowanie w odpowiedzi na moje

liczne pytania i poświęcony czas.

Dziękuję również wszystkim osobom zaangażowanym w pro-

ces mojego kształcenia, które swoim zaangażowaniem i zapałem

do przekazywania wiedzy, oraz swoją otwartością, motywowały

mnie do dalszej wytężonej pracy.

Specjalne podziękowania kieruję również do mojej narzeczonej

Zuzanny i mojej siostry Aleksandry, za wsparcie, częstą pomoc

w ocenie jakości i czytelności objaśnień, oraz doborze najod-

powiedniejszych słów.

Serdecznie dziękuję!!!

J. Skrzyński Selected Tools for Grammatical Evolution.

Contents

1. Artificial intelligence ... 13

1.1. Definition of artificial intelligence and its goals ... 13

1.2. Generalization of knowledge... 13

1.3. Modern AI algorithms and their applications.. 14

1.4. Issues posed by use of artificial neural networks .. 14

1.5. Explainable AI, its challenges and its role .. 15

2. Theoretical foundations of GE algorithms ... 17

2.1. Genetic Programming.. 17

2.1.1. Introduction... 17

2.1.2. Details ... 17

2.2. Formal Languages and grammars ... 18

2.2.1. Non-terminals ... 19

2.2.2. Terminals... 19

2.2.3. Production rules .. 20

2.2.4. Start symbol .. 20

2.3. Context Free Grammar – CFG .. 20

2.4. BNF ... 21

2.5. EBNF... 22

2.6. Grammatical Evolution ... 22

3. Details of Grammatical Evolution ... 23

3.1. How GE works .. 23

3.2. Defining a grammar... 24

3.3. Defining a fitness function... 24

3.4. Selection of individuals for next generation.. 25

3.5. Evolution — Creating subsequent generations ... 25

7

8 CONTENTS

4. Requirements of users .. 27

4.1. Technical aspects ... 27

4.1.1. Time efficiency.. 27

4.1.2. Compatibility .. 27

4.1.3. Dependencies .. 28

4.2. Non-measurable features ... 28

4.2.1. Ease of learning... 28

4.2.2. Life cycle of tool ... 28

4.2.3. Community around the tool .. 28

4.2.4. Documentation and resources ... 29

4.2.5. Quality of code and ease of modification ... 29

4.2.6. License .. 29

4.2.7. Current user knowledge and preferences .. 30

4.3. Conclusion on requirements .. 30

5. Details on analysis and comparison of tools. Selected issues. 31

5.1. Differences in architecture of tool ... 31

5.2. Differences in provided functionalities ... 32

5.3. Different target platform.. 32

5.4. Different way of providing input data ... 32

5.5. Conclusion on possible issues ... 32

5.6. Presentation of tools .. 33

5.7. Method of comparison... 33

6. PonyGE2 .. 35

6.1. Literature ... 35

6.2. Documentation .. 36

6.2.1. Requirements .. 36

6.2.2. Evolutionary parameters ... 37

6.2.3. Grammars.. 37

6.2.4. Details on genome... 37

6.2.5. Fitness function... 37

6.3. Maintenance .. 38

6.4. Installation ... 38

J. Skrzyński Selected Tools for Grammatical Evolution.

CONTENTS 9

6.5. Usage ... 39

6.5.1. Grammar design.. 39

6.5.2. Fitness function... 40

6.6. Retrieving evolved results ... 41

6.7. Examples ... 41

6.7.1. Regression... 42

6.7.2. Program synthesis ... 43

6.8. General remarks .. 45

7. PyNeurGen .. 47

7.1. Literature and sources of information ... 47

7.2. Documentation .. 47

7.3. Maintenance .. 48

7.4. Installation ... 48

7.5. Usage ... 49

7.6. Retrieving evolved results ... 50

7.7. Example... 51

7.8. General remarks .. 52

8. gramEvol.. 53

8.1. Literature ... 53

8.2. Documentation .. 54

8.3. Maintenance .. 54

8.4. Installation ... 55

8.5. Usage ... 55

8.6. Retrieving evolved results ... 56

8.7. Example... 56

8.8. General remarks .. 58

9. Other available tools ... 61

9.1. GRAPE.. 61

9.2. GELab ... 61

9.3. PonyGE.. 62

9.4. AGE... 62

9.5. GenClass.. 63

J. Skrzyński Selected Tools for Grammatical Evolution.

10 CONTENTS

10. Applications described from theoretical point of view .. 65

10.1. Symbolic regression .. 65

10.2. Extracting rules for a classifier from delivered dataset ... 65

10.3. Generating the architecture of neural networks... 66

10.4. Creating a syntactically valid program.. 66

10.5. Conclusion on theoretical applications.. 66

11. Real life applications... 67

11.1. Discovery of relations between data and retrieving the original formula 67

11.2. Solving models describing the placement of facilities .. 67

11.3. Detecting cybersecurity threats ... 67

12. Estimation of the function counting primes using PonyGE2...................................... 69

12.1. Used grammar ... 69

12.2. Data set .. 70

12.3. PonyGE2 parameters ... 70

12.4. Results ... 71

13. Estimation of the standard acceleration gravity value from simple pendulum
measurements .. 75

13.1. Introduction and data set ... 75

13.2. Used grammar ... 75

13.3. Used parameters .. 76

13.4. Achieved results .. 77

13.5. Enriched data set ... 78

13.6. Second attempt .. 78

13.7. Conclusion... 80

14. Regression over data set with introduced noise using PonyGE2 81

14.1. Introduction and data set ... 81

14.2. Script used for data set generation and data set details ... 81

14.3. Test trial ... 83

14.4. Test on data with noise .. 84

14.5. Conclusions ... 87

15. Evolving formula for function composed of at least one periodic function using
PonyGE2 .. 89

J. Skrzyński Selected Tools for Grammatical Evolution.

CONTENTS 11

15.1. Data set .. 89

15.2. Trial with pure data ... 89

15.2.1. Conclusion on the test... 91

15.3. Test with noise... 91

15.3.1. Conclusion on the step of the experiment... 94

15.4. Test with noisy data and reduced constraints .. 94

15.4.1. Conclusion on the step of the experiment... 95

15.5. Conclusion... 97

16. Evolving a valid Python program to compute the sum of elements in a delivered
array ... 99

16.1. Introduction ... 99

16.2. Method of individual validation and calculating fitness value 99

16.2.1. Evaluation ... 99

16.2.2. Calculating fitness... 99

16.3. Used grammar ... 100

16.4. Implementation of the fitness class ... 102

16.5. Parameters ... 103

16.6. Results ... 104

16.7. Conclusions ... 104

17. Simple regression on the dataset generated by a polynomial of 4th order using
PyNeurGen .. 107

17.1. Introduction ... 107

17.2. Data generation.. 107

17.2.1. Data set.. 108

17.3. Fitness calculation ... 108

17.4. BNF grammar.. 110

17.5. Complete program... 111

17.6. Results ... 113

17.7. Remarks on used tool .. 113

18. Results, summary, and conclusion... 115

18.1. Results of tools comparison .. 115

18.1.1. General conclusion on comparison... 115

J. Skrzyński Selected Tools for Grammatical Evolution.

12 CONTENTS

18.1.2. Final recommendation on tools... 115

18.2. Conclusions on performed experiments and prepared models................................ 116

18.2.1. Final conclusions .. 116

18.3. Conclusion on GE potential applications .. 116

19. Further work ... 119

19.1. Better comparison.. 119

19.1.1. Expert knowledge on each tool... 119

19.1.2. Exploring tools in depth.. 119

19.2. Further literature review .. 119

19.3. Preparing own solution based on gained experience... 120

19.3.1. Motivation... 120

19.3.2. Usability.. 120

19.3.3. Potential benefits... 120

20. Program used to generate plots of functions using Matplotlib................................... 121

21. Program used to generate the dataset that contains a noise 129

J. Skrzyński Selected Tools for Grammatical Evolution.

1. Artificial intelligence

1.1. Definition of artificial intelligence and its goals

To begin with, one may try to define the artificial intelligence by saying that this is a way to

express the process of machine taking reasonable decisions. These decisions are based on the

data that was provided to the machine from the environment. There had been many discussions

how to define what the artificial intelligence is, to bring one definition one may bring article

by Dimiter Dobrev [18]. A broad definition is presented in the book “Think AI” [40]. The

issue is even more difficult if one tries to split the name and define it by intelligent action

taken by a machine — as some books [33] mention definition of intelligence as an abstract

term had yet not been fully established thought centuries. Therefore, it is reasonable to assume

that there is no single precise and unique definition of AI. Nevertheless, from some definitions,

one may extract some features of AI as the aspect mentioned in Encyclopedia Britannica [9]

— ability to generalize and reason. This is a crucial feature for today’s data processing. The

family of artificial intelligence algorithms is very broad and can be used in a wide variety of

applications. Literature also points out that due to modern computers’ processing power, AI is

often capable of detecting unseen patterns and trends that were previously not detectable, due

to the complexity of data [35].

1.2. Generalization of knowledge

Generalization is a tool that allows to extract the most meaningful part of data and drop the

redundant one without losing the precision. Mathematics is already in possession of powerful

tools that allows us to extract the knowledge from given data. One of such methods is linear

regression. Having a data set and the knowledge that the relationship should be linear, it is pos-

sible to accurately determine coefficients of this relation. An easy to spot drawback is the need

of assumption of function form. Having a 4th degree polynomial and trying to use linear regres-

sion will result in inadequate result. A simple solution is to use the correct form of polynomial

13

14 1.3. Modern AI algorithms and their applications

or use a polynomial of much higher degree than desired, but it still does not allow discovering

all functions. An example could be a real function with asymptotes, or an abs() function.

1.3. Modern AI algorithms and their applications

Currently, the branch of AI is one of the most known in a whole field of Computer Science,

being also subject of many research projects. Huge development of this branch resulted in lots

of available AI algorithms. Rishal Hurbans’s book [33] divides concepts of artificial intelligence

to some intersecting categories: biology-inspired algorithms, machine learning algorithms, deep

learning algorithms, search algorithms. According to this publication these concepts are used

in following paradigms and to solve following problem classes: search problems, optimization

problems, prediction and classification problems, clustering problems, deterministic models,

stochastic/probabilistic models. Such huge variety of concepts makes AI appear in most of

today’s systems.

Reading through current research, one may come to conclusion that biggest efforts and

hopes are utilized by concept of artificial neural networks that allows to easily adapt to many

use cases without adjusting the core of algorithm. ANNs require user just to provide correct

training data set and create correct architecture that allows the network to learn. Such approach

moves efforts of developers from analyzing the data and creating algorithm to preparing dataset

of high quality and adjusting training parameters as well as the architecture. Although it is un-

doubtedly a beneficial feature, it comes with a certain cost — the exact “process of thinking” is

not explainable. Knowledge is being encoded into weights of synapses, and analysis of behavior

of such a network poses a serious challenge due to number of variables.

1.4. Issues posed by use of artificial neural networks

Not being able to explain the whole process is a huge cost. One of the issues that emerges

could be proving that the outcome will be correct in all scenarios. Critical applications require

such analysis to ensure safety. The threat is not only imaginary. There were already research [59]

on how to manipulate output of image classifier by changing just a single pixel. The author of

the classifier is only capable of providing certain statistical measures of successfully classified

images, but is not able to provide a proof that the classifier will always work in the same way

under certain conditions. The reason is mentioned previously — the lack of explainability.

J. Skrzyński Selected Tools for Grammatical Evolution.

1.5. Explainable AI, its challenges and its role 15

1.5. Explainable AI, its challenges and its role

A publication entitled “Explainable Artificial Intelligence” [29] considers XAI as the form

of artificial intelligence that will be more understandable by human. Current techniques can

provide explainability but on cost of precision and vi ca versa precision on cost of explainability.

Best precision is provided by neural networks, but they are hardly explainable due to complex

structure and amount of calculations [29].

J. Skrzyński Selected Tools for Grammatical Evolution.

16 1.5. Explainable AI, its challenges and its role

J. Skrzyński Selected Tools for Grammatical Evolution.

2. Theoretical foundations of GE algorithms

2.1. Genetic Programming

2.1.1. Introduction

Genetic Programming (GP) is another branch of AI that concentrates around using concepts

that humans learned from molecular biology in solving search problems. Basically, this method

models how biological evolution approaches search for organism that fits best the environment.

To tackle this task, programmer have to develop the measure of fitness for the problem, that will

be base for deciding which entities should be reproduced in next generations.

The real advantage of the approach is that it involves defining a high level statement about

the problem and criteria for the solution and evolving population of computer programs that

would be able to solve it [38]. This implies that much of the time-consuming work concentrated

around development of an algorithm is done by evolution.

2.1.2. Details

Given the overview of genetic programming as a method, to take full advantage of its ben-

efits one must properly define the following 4 operations that will occur during the process:

selection, replication, crossover, and mutation [63].

2.1.2.1. Operations

2.1.2.1.1 Selection Selection is an operation that, given a set of individuals from the cur-

rent generation, provides a subset of it that contains individuals selected to be parents for the

next population. There are currently many known methods of performing this operation, but

tournament selection is currently the most common [63].

2.1.2.1.2 Replication Replication is an operation that resembles asexual reproduction in

biology — for example, similarly to yeast — where the next generation is an exact copy of the

parent [1]. This operation involves copying the individual into the next generation.

17

18 2.2. Formal Languages and grammars

2.1.2.1.3 Crossover Crossover is a second type of reproduction mechanism in GP. It in-

volves creating a child based on parents. Child should inherit part of gens from each parent,

giving the possibility to further enhance features of parents. This operation has to be correctly

defined to have a child that inherits features but also remains correct in terms of problem domain

— for example having an algorithm running on trees, no cycle can be produced as a result of

crossover.

2.1.2.1.4 Mutation Mutation serves an important role in the whole process, allowing to

escape local optima of search space by introducing random modification of genome. It also has

its origins in the biology.

2.1.2.2. Evolution

Once the problem had been correctly described, one may start the search process that con-

sists of subsequent phases of selecting the best individuals from the population, reproducing

them into the new population and applying mutations. The process is usually limited by the

number of generations that should be created, and the best individuals are being chosen accord-

ing to an adopted selection strategy. The number of generations has significant influence on the

outcome of the experiment — the bigger the number, the better the solution produced by the

algorithm.

2.2. Formal Languages and grammars

As written in a book by Alan Parkes [49] “a formal language is any (proper or non-proper)

subset of the set of all strings which can be formed using zero or more symbols of the alphabet

A. “. The same book also explains the exact meaning of the alphabet, as “An alphabet is a

finite collection (or set) of symbols. The symbols in the alphabet are entities which cannot be

taken apart in any meaningful way, a property which leads to them being sometimes referred

to as atomic.”. By the definitions for demonstration purpose let A be the alphabet consisting of

atomic symbols contained in set

{a, b, c}.

Then we may define several languages including the language A∗ which is defined as a language

consisting of all strings of symbols (with repetitions) belonging to the alphabet A including the

empty word [65]. Then words like

{aaa, ab, aaaab, abc, bca, ϵ}

J. Skrzyński Selected Tools for Grammatical Evolution.

2.2. Formal Languages and grammars 19

where ϵ denotes empty word, are all contained in the language, but words like following are not:

{d, af, fc}

A subset of language A∗ is the language A+ that does not contain the empty word. One may

observe that

A+ ⊂ A∗.

Having said what the language is, it becomes clear that neither of the presented languages

is easy to use, as they contain infinitely many words (assuming that the alphabet is not empty).

Such description of a language is too general to restrict it enough to make it useful, and defining

a language as a closed set limits possibilities. There are different ways to define language, but

the most general is use of grammars. Grammar is defined by the previously mentioned book

as “a set of rules for generating strings”. These rules can limit generated languages to such an

extent that they may be used in automated processing.

Such formalization of a language allows creation of automatons that will accept and interpret

the language. Examples of such application of grammars are compilers and parsers. Further

formalized, PSG grammar, was proposed by Noam Chomsky and defined as a tuple (N, T, P, S)

where N is set of non-terminals, T is set of terminals, P is set of production rules and S is a

starting symbol.

Then the string belongs to the language generated by CFG if and only if there exists such a

finite list of applying productions to non-terminals to achieve that string. String must not have

the non-terminal symbols — it has to be fully terminated.

2.2.1. Non-terminals

In the definition of PSG, non-terminal is an atomic symbol that is present in at least one

production rule on the left side — being a point where another transformation of the string

may occur. Then N is a set of all such symbols in the given grammar. In most of the theoretic

literature these are by convention denoted with uppercase Latin letters, whereas in computer im-

plementations, following BNF conventions, non-terminals are mostly implemented by a word

enclosed in angle brackets. In case of using multiple words, spaces are replaced with under-

scores.

2.2.2. Terminals

The set of terminals is an alphabet of all atomic symbols that cannot be further transformed

using production rules defined in the grammar. Often, authors tend to denote them with lower-

case letters of the Latin alphabet.

J. Skrzyński Selected Tools for Grammatical Evolution.

20 2.3. Context Free Grammar – CFG

2.2.3. Production rules

Production rules are defined as mappings from non-terminals to terminals or non-terminals.

Formally one may define them as follows: the production has a form

α → β

where α is a left-hand side of the production, β is a right-hand side of the production and

α ∈ (N ∪ T)+

β ∈ (N ∪ T)∗.

In this definition α is a word belonging to a language generated by an alphabet being a con-

junction of sets of terminals and non-terminals. Similarly, β is a word belonging to a language

generated by an alphabet being a conjunction of sets of terminals and non-terminals, but this

time also the empty word ϵ. Additionally, α is subjected to an additional constraint of containing

at least one non-terminal symbol. Examples of such productions are:

A → aaAB,

B → bb,

aA → ac.

It is worth to emphasize, that it is allowed to use terminal as a part of left component of the

production rule, but as it was said previously they are not allowed to be transformed — their

order in respect to other symbols must be preserved in the resulting word.

2.2.4. Start symbol

Start symbol is a symbol that always begins the process of derivation. It is a symbol from a

set of non-terminals.

2.3. Context Free Grammar – CFG

On top of the CFG concept, Noam Chomsky build a hierarchy of languages based on their

characteristics allowing easier computations. One of that types that is simple enough to be

used in case of Grammatical Evolution is CFG — Context Free Grammar. CFG has additional

requirements that apply to a set of production rules, namely in CFGs it is not allowed to use

J. Skrzyński Selected Tools for Grammatical Evolution.

2.4. BNF 21

terminal symbols on left-hand side of production and only one non-terminal may appear in the

left part of production. Formally, CFG productions have a form

α → β

where

α ∈ N, β ∈ (N ∪ T)∗.

Example productions that are allowed are then

A → aB,

B → aa,

A → ϵ.

2.4. BNF

BNF is a notion to describe CFGs in a formalized way. This notion was originally proposed

by John Warner Backus [7], later it was described as metalinguistic formulae [6]. Refereed

report contains BNF in a form that differ from originally proposed notion — over the time,

certain rules got modernized. There are a lot of good articles on BNF notion in the internet [46].

Each rule in BNF is described with a non-terminal, symbol ::= that, according to the mentioned

article, could be understood as “may expand into” and expression describing possible replace-

ments. Non-terminals are created by surrounding the name of the token with angle brackets.

There is also the possibility of describing multiple possible choices for the new sequence —

each option should be separated using | sign. An example of grammar creating a real number in

BNF notion is presented below.

< real_number >::=< int > . < decimal_fraction >

< decimal_fraction >::=< digits >

< int >::=< 1_9 > | < 1_9 >< digits >

< digits >::=< digits >< 0_9 > | < 0_9 >

< 0_9 >::= 0|1|2|3|4|5|6|7|8|9

< 1_9 >::= 1|2|3|4|5|6|7|8|9

J. Skrzyński Selected Tools for Grammatical Evolution.

22 2.5. EBNF

2.5. EBNF

EBNF is an extended version of BNF that is standardized by ISO organization under stan-

dard ISO14977 [34]. As key motivations behind development of EBNF sources point out need

for extendability and lack of direct representation of repetitions and optional occurrences in

BNF [69]. EBNF addresses all that issues by defining new symbols, making it closer in usage

to regular expressions.

2.6. Grammatical Evolution

Grammatical Evolution [47] is a concept that originates in Genetic Programming [39] taking

advantage of Formal Languages Theory to provide better performance [23]. Formal Grammar

provides additional domain knowledge [54] that constrains the solution and ensures it is well-

structured and follows certain rules. As a result, GE provides a way to achieve a transparent

and explainable model. Documentation of PonyGE2 — one of GE tools — states that GE’s

modularity gives huge flexibility, allowing use of alternative search strategies [23].

The main idea of Grammatical Evolution is that genotype-phenotype mapping is performed

as generation of sentences according to provided grammar. Genome is used to perform selection

of available production rule in a deterministic way.

This approach also makes it possible to create a syntactically correct computer program in

any arbitrary language [52], or a correct and valid mathematical expression realizing the concept

of so-called Symbolic Regression [68]. Furthermore, thanks to the grammars, it may be applied

to wide variety of applications like for example the case mentioned by publication entitled “A

Grammar-based Genetic Programming Approach to Optimize Convolutional Neural Network

Architectures” [17] — evolving architecture of a Convolutional Neural Network.

J. Skrzyński Selected Tools for Grammatical Evolution.

3. Details of Grammatical Evolution

3.1. How GE works

Grammatical Evolution (GE) is a kind of genetic algorithm, meaning that it is based around

the concept of evolution. First, the genome is established — it is usually a sequence of integer

numbers initialized with random values. To reach the solution that is encoded by genome, map-

ping process is needed. If it is defined as a simple mathematical operation [47] — let < s > be

starting symbol and let P = < a >,< b >,< c > be set of possible productions. Then P can

be represented in BNF form as presented below.

< s >::=< a > | < b > | < c >

Let also G[i] indicates the i-th codon of genome. Then a production rule is chosen according

to formula stated below.

rule_index = G[i] mod |P |

It is important to note that production rules are indexed starting from 0. In the presented ex-

ample, let G[i] be 133. Then having 3 production rules, rule is chosen as presented in following

calculation:

rule_index = 133 mod 3

rule_index = 1

According to the calculations’ gen points to second rule meaning that < s > is transformed

into < b >. For next transformations, subsequent codons are used. In case of running out of

codons, one should start reading it from the beginning. This technique is heavily inspired by the

natural phenomena of gene-overlapping [47]. As the authors of the original paper suggest it is

important to note that each time codon is read in pair with the same non-terminal, always the

same output is generated, but in case of different non-terminal, codon may produce different

23

24 3.2. Defining a grammar

output. The process of generating phenotype out of genotype may be continued till it is fully

terminated, or one may specify maximal number of genotype wraps to limit possible infinite

loops.

As a genetic algorithm, GE requires operation of mutation and crossover to be defined by

the user.

3.2. Defining a grammar

Grammar is the additional piece of knowledge that is being provided by the user into the

system, allowing efficient search that limits the search space to only entities that follow certain

stated rules. As described in previous sections, it is the first step in solving a problem using GE

methods. It is often mentioned as a most difficult part and indeed it has undoubtedly significant

impact on correctness of solution and the speed of search. These points are clearly stated in

publication “Initialization and Grammar Design in Grammar-Guided Evolutionary Computa-

tion” by words that grammar “should focus on efficient and elegant expression of language, and

preserving modularity in solutions” [15].

Mentioned publication emphases also the point that grammar design is crucial for efficiency

of algorithm. Another mentioned point is that grammar should not introduce bias in search

by favoring some choices. There are also stated steps towards increasing quality of grammar:

“Balancing, Unlinking, Eliminating non-terminals, removing grammar biases, prefix notation,

Compromise grammar.” [15] Similar approach is taken by other authors [41].

3.3. Defining a fitness function

Fitness is a measure of the utility of the given individual. Its purpose is to show how much

value is in the individual in terms of the solution. A correct definition of the fitness calculation

procedure is crucial in the process of creating a GE model.

Fitness allows selection of individuals that are going to be used in the next generations. To

make it possible, the fitness function must precisely define what is valued more and what is less

important.

Most of the sources point out that designing correct fitness functions may pose a challenge

for users. It is very easy to mismatch the weights of features promoting not desired behavior.

There are many guidelines on how to design the best fitness functions, but there is no sin-

gle rule. Looking for the guidelines, one may come across different research [8] examining

statistical metrics as fitness functions for grammatical evolutions.

J. Skrzyński Selected Tools for Grammatical Evolution.

3.4. Selection of individuals for next generation 25

Some sources [2], [20] mention that to promote simplicity and explainability, it is worth

binding fitness to the length of the solution.

3.4. Selection of individuals for next generation
Selection is a stage of the evolutionary process preceding the creation of a next generation,

when some of the individuals from the current generation are being chosen to reproduce to

create the new generation [70].

Individuals are selected using different methods, but most of them perform selection de-

pending somehow on the value of fitness of the individual.

There are many known strategies to perform that selection [67]. Most often the tournament

selection is chosen. According to sources, it involves conducting several tournaments based on

fitness value among a randomly selected subset of the generation, selecting winners of tourna-

ments.

There are lots of resources available describing possible selection strategies. Some of them

use fitness measures to determine the probability of being selected and then running the random

selection with this custom probability distribution.

Below, a list of a few resources describing other selection strategies is presented:

– https://www.tutorialspoint.com/genetic_algorithms/genetic_

algorithms_parent_selection.htm

– https://github.com/PonyGE/PonyGE2/wiki/Selection

– https://medium.datadriveninvestor.com/

genetic-algorithms-selection-5634cfc45d78

There are also numerous publications handling the issue of rating the selection strategies.

To mention just two of them: [56] and [72].

Choosing the right selection method may have a crucial influence on the efficiency of the

final solution.

3.5. Evolution — Creating subsequent generations
Evolutionary algorithms perform, in iterations, a well-defined routine. It was clearly de-

scribed by Figure 1 in the publication entitled “Comparative Study of Different Selection Tech-

niques in Genetic Algorithm” [72]. The presented sequence is very general, and therefore it

needs to be adjusted to the Grammatical Evolution technique, which is a specialized technique

that falls into Genetic Programming. The modified list is presented below.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm
https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm
https://github.com/PonyGE/PonyGE2/wiki/Selection
https://medium.datadriveninvestor.com/genetic-algorithms-selection-5634cfc45d78
https://medium.datadriveninvestor.com/genetic-algorithms-selection-5634cfc45d78

26 3.5. Evolution — Creating subsequent generations

1. Initialize the population — the process when starting the genome for the population is

established.

2. Mapping — process when genotype in the form of numbers is translated into phenotype

that is the string described by the grammar.

3. Calculating fitness — computing the value of fitness according to the chosen strategy.

4. Checking the completion criteria — a phase when the algorithm should evaluate all of the

constraints, namely desired fitness value and the maximal number of allowed generations.

If the criteria are met, the algorithm should return the result.

5. Selection — process of choosing which individuals are going to be reproduced in the next

generation and if they are going to be crossed over or copied in exact form.

6. Cross-over — a process when a new genome is created from two initial ones.

7. Mutation — to allow escaping local optima, random mutations are introduced into the

system. In this phase, some percentage of individuals are subjected to mutations according

to a chosen strategy.

8. Returning to point 2.

The presented list of steps shows the general concept of process realized by Grammatical

Evolution. It is different from the normal evolutionary algorithm because it has a well-defined

procedure of mapping the achieved genotype to the phenotype that could be then evaluated. The

mapping process is based on grammars that were described in previous sections.

J. Skrzyński Selected Tools for Grammatical Evolution.

4. Requirements of users

User requirements tend to be one of the best measures in terms of pointing out the best tool.

This chapter handles the topic of what user of GE tool need, providing a solid foundation for

further discussion on selecting the best tool. This section is going to use concepts referring to

software quality [71].

4.1. Technical aspects

4.1.1. Time efficiency

As a main technical aspect, scientific users value the efficiency of the tool, especially the

time efficiency.

Precisely to measure such efficiency, similar task should be given to each tool and time

measures should be taken. The task needs to be computationally hard to emphasize differences

and make them distinguishable from the noises.

4.1.2. Compatibility

Another aspect that users value is compatibility of tools with the current system. Solv-

ing compatibility issues often have huge negative impact on efficiency of the whole system,

therefor users value tools that are able to integrate with their environment. This aspect can be

further unfolded to for example used language, its version, additional dependencies, constrains

on versions of that dependencies, target platform etc. making comparison based on it quite

complicated.

Additionally, the more flexible the tool is, the easier it is to port it to other platform and use

in a production environment, allowing the user to take advantage of it across a wider range of

applications.

27

28 4.2. Non-measurable features

4.1.3. Dependencies

Projects that have fewer dependencies are easier to maintain and modify, additionally the

installation process as well as updates are easier to execute. Therefore, user values more the

software that will have fewer dependencies.

4.2. Non-measurable features

4.2.1. Ease of learning

The typical user tends to use tools that he had already learned and is capable of fluent use.

In terms of new tools, users like tools that are easy to learn and appears to them as intuitive. To

satisfy this need the software needs to follow commonly used standards and conventions and

provide well written documentation that no only shows parts of the tool but also explains their

meaning, show possible applications, points out common issues and their solutions. Addition-

ally, it is helpful to provide lots of examples as they present all the features in real environment

and significantly influences user’s understanding of documentation, resolving any possible in-

consistencies.

Documentation should be also kept up to date with updates of the tool allowing user to have

up-to-date information, reducing time of debugging or searching for correct solution.

4.2.2. Life cycle of tool

It is important to use tools that re still maintained. It allows users to use up-to-date solution

and reduces risks of compatibility related issues as the tool still receives updates.

Additionally, users may also value frequency of releases — frequent updates ensure that

new features are developed in short intervals and issues are addressed in reasonable time, not

causing delays on users side.

Issue reporting and solving have also huge contribution to this aspect. Users value quick

developer response to bugs, issues, and questions. As developers tend to use different methods

of contact, users value more comfortable and easy accessible tools allowing interaction with

developer.

4.2.3. Community around the tool

Complementary to support provided by the developer, community support is also highly

valued by users. Size of community determinate ease of finding resources relevant to a wide

J. Skrzyński Selected Tools for Grammatical Evolution.

4.2. Non-measurable features 29

range of questions related to the tool. As an example, https://stackoverflow.com

may be pointed, where community of developers share ideas and provide help for each other.

Natural consequence of huge community is reduced time of receiving answer or finding solution

to particular issue.

Tools with bigger community should be chosen over those with small or not often active

community as it may have significant impact on user experience and time it takes to prepare a

solution with the tool.

4.2.4. Documentation and resources

A key feature in understanding how to use the tool is comprehensive documentation and

guides describing correct use of the tool with examples and advises. This enhances the expe-

rience and reduces time and effort needed to start using the tool and improves the learning

process. Users would rather go for the software that they can easily understand and imagine

how to use in their specific case.

Because of this, amount of the documentation, tutorials, and guides as well as their quality

should be taken into account while comparing software tools.

4.2.5. Quality of code and ease of modification

Quality of code plays a key role in the maintenance process. It allows quick modifications

without need to debug or refactor bigger parts of code. Also, it ensures easy understanding

of underlying logic, allowing the user to accurately perform needed adjustments or to further

develop the system to the own needs. Quality of code also gives the ability to perform analysis

of this code quicker. Another advantage is that good quality code is more reliable and more

prone to bugs.

Taking into account, the quality of the code seems to be reasonable from many points. It

may have huge influence on reliability, user experience and long term life of the project.

4.2.6. License

In terms of reusing the tool in the own project, the license may be crucial as it defines the

boundaries of legitimate use as well as states the conditions under which the user is allowed

to use the tool. Another important thing is that it also covers rules on accessing the sources of

tool. This detail is important for user experience as access to sources may significantly increase

speed of development or debugging by introducing knowledge on underlying code whereas in

terms of closed source system, user my only depend on the developer to receive information.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://stackoverflow.com

30 4.3. Conclusion on requirements

In choosing a tool that would be possible to be used, it is undoubtedly crucial to examine

the license rules. Additionally, it is worth to notice if license allows accessing the sources —

this may significantly help the user and prove that the system behaves in a desired way.

4.2.7. Current user knowledge and preferences

Due to currently possessed knowledge, the user may prefer one tool over another. The main

factor here would be the language the tool is written in. User would prefer the one that uses

language he knows best as it is easier to adopt it rather that learning first the language and then

the tool itself.

Such observation has significant impact on the comparisons as this aspect may differ across

the users and there is no available method to fairly judge it. The only possibility is to assess

it based on preferences of developers gained via surveys and comparing by given technology’s

market share.

4.3. Conclusion on requirements

There are numerous criteria that need to be taken into account. Many of them are non-

measurable, posing a serious challenge in terms of conducting a fair comparison. From many

points it appears that due to the wide variety of possible parameters it may not be possible to

point the one single winner, but rather for each particular situation the other tool may be the best

choice. That choice may depend on current user knowledge, requirements, dependencies, and

architecture of the current system, emphasis on certain feature, license requirements etc. being

features of a single particular use case.

J. Skrzyński Selected Tools for Grammatical Evolution.

5. Details on analysis and comparison of tools. Se-
lected issues.

By efficiency, one should understand the ration of work done and consumed resources. The

resources in terms of algorithm are time and memory.

Comparison of efficiency of tools selected here, could not be precise due to many factors

that have huge influence on potential results. A few of the identified issues causing issues with

comparison were listed and described below.

5.1. Differences in architecture of tool

Among available tools there are frameworks, libraries and ready applications. From this

point of view it is impossible to compare them with each other with respect to time taken to

solve some problem as they serve different purposes and require different level of developer

involvement. To conduct fair comparison, it would be required to isolate the common part and

measure just that. Libraries that provide only subset of functionalities given in framework are

likely to be faster because of fewer operations and on the other hand final execution time may

get highly influenced by user written code that introduces impreciseness in measuring tool effi-

ciency as it does not depend on the tool but on user familiarity with the tool and users general

programming knowledge.

Similarly to time taken, the memory usage also highly depends on chosen architecture of

the tool — libraries would use less memory as they perform less work, while application that

needs from user just the configuration will use the most as it delivers more functionalities.

Having that said, consumed memory and time measures could not be a precise because

amount of already prepared code is different, therefor it is impossible to treat mentioned criteria

as reliable indicators of tool quality.

31

32 5.2. Differences in provided functionalities

5.2. Differences in provided functionalities

Tools cover different functionalities that get executed during the evolution. As an example

it may be pointed out that PonyGE2 prepares a full report with statistics and final output while

PyNeurGen being a library sticks to providing a result in the form of a variable. Then user is

responsible to take care of presentation and storing of result.

Again, such difference means that comparison based on time or used memory measure

would not be fair as measures would cover different subsets of functionalities that get executed.

5.3. Different target platform

Available tools are build using different languages to target different environments. Due to

such differences, comparison between some tools may be impossible. For example, it would not

be reasonable to compare memory usage in c++ and python application nor the time consumed

for execution. But it does not mean that one is of worse quality. Basically, higher resource usage

can be treated as a trade of for using language known by most data scientists.

Again, this shows lack of ground for performing a fair comparison based only on numbers,

as they are partially results of presence/lack of some advantages.

5.4. Different way of providing input data

Among available tools, the way of providing input data slightly differ. Some of them like

libraries get the data passed as a function parameter, while other tools need to read them from a

file. As file operations cost a lot more time than in memory operation, it includes time overhead

for all tools reading data from files instead of having them ready in memory.

This difference becomes clear in terms of previously mentioned libraries vs frameworks vs

applications. The convenience of ease of use — reading config from a file instead of preparing

the own program that will have it ready in memory — comes with the cost of time of reading

files. However, for comparison it means that this overhead should not be included in final results

as one tool does take more time to execute the task but performs significantly more work.

5.5. Conclusion on possible issues

Due to presence of differences in specifications of each tool, performing exact time and

memory usage measures is pointless. It is not possible to isolate a common interesting part in

J. Skrzyński Selected Tools for Grammatical Evolution.

5.6. Presentation of tools 33

all tools that could be subjected to fair numerical comparison. In each tool delivered advantages

comes with certain costs and for each project different tool may be the best choice depending

on user preferences and specific requirements.

As proven in earlier part of this chapter, numerical comparison based on statistics is not

possible due to numerous differences in tools specifications. Therefor, another approach must

be taken to present quality of tools and compare them.

5.6. Presentation of tools

According to identified requirements and issues, selected tools will be described widely

to provide as many insights as possible about the experience of using the tool with results of

experiments conducted with use of the tool.

Each tool has notes on its life status, size, and activity of the community around the tool to

provide information on potential availability of fixes, patches, and updates as well as help and

answers to specific questions.

Furthermore, description contain information about available official resources and their

quality. It includes official publications, wiki pages, tutorials, and documentation.

Besides of that, descriptions contain information on available literature that provides infor-

mation related to the tool as well as reviews of them.

Each description is accompanied by description of usage examples with detailed instructions

on recreating results.

5.7. Method of comparison

Due to already mentioned factors, exact comparison is not possible to be done. Instead, for

each tool, advantages and disadvantages are presented without pointing out a winner. Presented

details are provided to make the reader able to conduct the comparison on her/his own, having

in mind project specific needs and constraints. As it was mentioned, these may have significant

impact on the selection.

J. Skrzyński Selected Tools for Grammatical Evolution.

34 5.7. Method of comparison

J. Skrzyński Selected Tools for Grammatical Evolution.

6. PonyGE2

PonyGE2 [25] is a tool developed in Python. It does come with all necessary features to

start model development. The tool is very mature and advanced. It is designed as a standalone,

modifiable application.

6.1. Literature

PonyGE2 is pointed out as a tool for people who start work with Grammatical Evolution.

Some publications classify this tool as a state of the art [61]. In the article “Software review:

Pony GE2” it is described as a well written tool that has a lot of possible customization op-

tions [60]. The tool is said to be very efficient and lightweight. The paper also mentions some

drawbacks, including old multi-objective optimization algorithms or lack of good issue report-

ing tool for community. As another issue, the author of the article points out possible inconve-

nience for not experienced users — lack of easy installation, for example by python package

manager pip.

The mentioned article brings up a lot of potential use cases, pointing out that the package

comes with ready to use examples.

Potential use of the tool was also mentioned in the description of a workshop that took place

during PyCon 2022 conference [28]. Authors of the workshop suggest that PonyGE2 may be

used to create high entropy seeds for cryptography operations. This is an important use case, as

high entropy seeds are one of the crucial parts of cryptographic data protection that is resistant

to crypto analysis. The high level of entropy guarantees that the seed should be close to random.

The article presenting another tool — GRAPE [11] — brings up another important issue

that it is important to construct software around well known and adopted frameworks, which

PonyGE2 does not — it is build around its own architecture. The mentioned paper also compares

GRAPE to PonyGE2, presenting that there are fewer methods available in PonyGE2. Although

drawbacks of PonyGE2 are brought up, both tools are presented as comparable when it comes

35

36 6.2. Documentation

to achieved results. Such altitude of author suggests that PonyGE2 is one of the current leaders

in GE implementation.

Some of currently available tools also tends to build around PonyGE2. For example,

“evoltree: Evolutionary Decision Trees” [36] is said to be using PonyGE2 as its engine for

some cases.

PonyGE2 has also been used as a tool in improving architecture of convolutional neural

network [16] proving that it achieves probably best results for nowadays use cases.

The main source of information about this tool is its own wiki https:

//github.com/PonyGE/PonyGE2/wiki, the original paper, and well-prepared

examples. It is also possible to easily reverse engineer the mechanics of the tool,

as the code does contain useful comments. Additionally, there is a tutorial, writ-

ten by the tool user, available via URL https://towardsdatascience.com/

introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a.

It provides clear guidelines on designing the own models.

6.2. Documentation

Documentation of the tool does contain a lot of useful information, it is written in such

a fashion that users not familiar with programming should also be able to take advantage of

it. It does mostly describe concepts used in the tool and parameters that could be changed to

fine-tune the process. It does not contain a very detailed description of technical aspects, but

in conjunction with comments present in the code, it does answer all the questions that may

emerge while preparing the own model.

Some of the most important topics emphasized by the documentation are presented below.

6.2.1. Requirements

From the documentation, one may read that the tool has very little dependencies [24]. The

requirements are presented as follows:

PonyGE2 requires Python 3.5 or higher. Using matplotlib, numpy, scipy, scikit-

learn (sklearn), pandas.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://github.com/PonyGE/PonyGE2/wiki
https://github.com/PonyGE/PonyGE2/wiki
https://towardsdatascience.com/introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a
https://towardsdatascience.com/introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a

6.2. Documentation 37

6.2.2. Evolutionary parameters

PonyGE2 gives the user direct access to evolutionary parameters in a couple of different

ways. First of all, these data are stored in a single dictionary and accessed through it to maintain

consistency.

User may modify these parameters by use of special file by putting in each line parameter

name, colon and its value. Then path to file is passed to the main script as a console argument,

allowing the program to read all parameters in a simple way.

Another method to set the parameters is by use of command line arguments. This way allows

quicker changes, but in case of batch jobs may not be ideal.

The order of sources of parameters is set as follows: default values are taken from the dic-

tionary, then they are updated with file contents, last is updating them by values of command

line arguments.

Additionally, the package allows users to add own parameters that may be used in algorithm

6.2.3. Grammars

According to documentation, the most important part of GE algorithm execution is to spec-

ify correct grammar that will correctly describe the solution of the problem. Authors explicitly

say that quality of grammar does have direct impact on performance of the whole system

6.2.4. Details on genome

Genome is represented as a set of codons that are limited by codon size parameter.

Documentation provides the information that in case the genome is too short to fully termi-

nate, the sequence wrapping may occur within limits specified by the user. Namely, a wrapping

operator gets applied to the genome to allow re-reading the genome from the beginning.

6.2.5. Fitness function

Package comes with ready fitness functions that are prepared as examples. User is allowed

to define own functions as classes derived from fitness.base_ff_classes.base_ff.

Worth to notice is that by default package is minimizing value of fitness. To cause maximization,

one should set parameter maximize to True.

J. Skrzyński Selected Tools for Grammatical Evolution.

38 6.3. Maintenance

6.3. Maintenance

The tool is available via GitHub repository that has the last commit done in 2022. Addition-

ally, the repository contains the issues that are dated also in 2022 that were addressed by tool

maintainers. The tool is clearly used by an active community. The repository contains informa-

tion about over 80 forks. Most of public forks were updated within last year. Additionally, by

querying google search engine with the phrase “PonyGE2” one may get numerous results that

describe the tool.

Additionally, there exist third party modified versions of the tool, proving the pres-

ence of community around the tool. Some of the repositories can be seen in forks sec-

tion of repository and on websites like https://paperswithcode.com/paper/

ponyge2-grammatical-evolution-in-python.

Besides, there is data related to the tool easily available to users, it is still non-comparable

with leading software tools in other fields. There are not many guides and tutorials for new

users, and the main source of knowledge is the documentation.

Having all of that information, it may be concluded that PonyGE2 is a tool that is still main-

tained by authors and community. As a result of narrow specialization of the tool the size of

community is non-comparable to leading software, but in comparison to other GE tools, the

community around PonyGE is well established and of considerable size. Additionally, informa-

tion provided by developers cover most of the use cases and potential questions that may arise

during exploitation.

6.4. Installation

Installation is straight forward. It involves downloading the sources from repository

https://github.com/PonyGE/PonyGE2 and installing dependencies using pip, via

provided requirements.txt. It is compatible with latest versions of python. During ex-

periments, it was tested using python 3.7, but the documentation mentions that every version

>=3.5 is allowed.

The procedure described in the documentation worked as intended without any problems.

The installation was deployed under venv.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://paperswithcode.com/paper/ponyge2-grammatical-evolution-in-python
https://paperswithcode.com/paper/ponyge2-grammatical-evolution-in-python
https://github.com/PonyGE/PonyGE2

6.5. Usage 39

6.5. Usage

PonyGE2 is written in a fashion that it can be used as a ready application called by a com-

mand line. In terms of programming own experiments it resembles fashion similar to frame-

works providing strict limitations and clear guidelines along with all necessary scaffolding to

place own code.

Data sets and parameters are passed to the PonyGE2 by use of files. It is also possible to pass

parameters as a command line arguments. The whole list of available command line arguments

with their descriptions can be obtained by use of command presented below:

1 python ponyge.py --help

To run the tool, user should set working directory to src folder of the tool and call python

to execute its main file — ponyge.py. Parameters of evolution are specified by command line

arguments or contained in parameters file — then just file need to be passed as an argument us-

ing -parameters key. Parameters include values that determine features like BNF grammar

to be used during the mapping process; size of population; number of generations; probability

of crossover and mutations; maximal length of genome; selection strategy; used fitness func-

tion. Detailed description of all parameters meaning can be accessed by calling PonyGE2 with

argument -help.

It is worth to mention that during evolution, user is informed about progress of execution as

a percentage of work done. Additionally, by use of -verbose parameter, the user may enable

printing additional information on current work.

The tool comes with predefined safe mathematical functions that can be used in gram-

mars to limit runtime errors like illegal zero division. Predefined functions define special val-

ues for arguments that would normally cause issue, allowing easier design of grammar and

more efficient evolution. Mentioned functions are contained in file located under following path

src/utilities/fitness/math_functions.py

The repository does contain many predefined fitness functions allowing the user to quickly

prepare an experiment without need to prepare the own function, but not preventing the user

from doing so.

6.5.1. Grammar design

PonyGe2 does provide a well-designed mechanism for handling grammar. First of all, gram-

mar is placed in an external file that may be shared by different models. It is defined using the

usual BNF notion. Examples of grammars are delivered with the package, making it even easier

to learn the principles of BNF syntax.

J. Skrzyński Selected Tools for Grammatical Evolution.

40 6.5. Usage

As the original publication [25] says that the first non-terminal in the definition of BNF

grammar is treated as a start symbol, reducing the amount of needed configuration. It could be

considered as a good practice as the starting point is a specific feature of the grammar, not the

model — this approach allows storing the starting symbol and grammar in a single place.

It is also worth mentioning that PonyGE2 comes with a mechanism able to handle inden-

tations and new line characters in the generated code, making it possible to quickly design

grammars describing syntactically correct Python code without performing additional transfor-

mations on phenotype before evaluation. Indentation blocks are enclosed by special sequences

of characters: {: and :}. Additionally, to insert a new line, one may use sequence {::}.

6.5.2. Fitness function

To define the own fitness function, the user should create a class that inherits from

base_ff. To define an evaluation routine, one should override function evaluate that is

declared as follows.

1 def evaluate(self, ind, **kwargs):

2 pass

An example class is presented below. It assumes that the fitness calculation formula is al-

ways contained inside an evolved function and stores the value in a variable named FITNESS.

This can be achieved by specifying a correct starting point in BNF grammar.

1 from fitness.base_ff_classes.base_ff import base_ff

2

3

4 class own_fit(base_ff):

5 # Parameter controling if fitness should be

6 # maximised or minimised

7 maximise = True

8

9 def __init__(self):

10 # Initialise base fitness function class.

11 super().__init__()

12

13 def evaluate(self, ind, **kwargs):

14 # d is dictionary that contains variables to be

15 # used or set by exec()

16 d = {}

17 # p contains string that is result of genotype to

18 # phenotype mapping

19 p = ind.phenotype

J. Skrzyński Selected Tools for Grammatical Evolution.

6.6. Retrieving evolved results 41

20 # Executing phenotype with specified dictionary d

21 exec(p, d)

22

23 # Output can be directly retrived from dictionary

24 # passed to exec(). In this example it is assumed

25 # that value is calculated inside program passed

26 # to exec function and its value is stored in

27 # variable named ’FITNESS’

28 s = d[’FITNESS’]

29

30 return s

PonyGE2 sources does contain a lot of examples on writing own fitness classes. Mentioned

examples are contained in directory src/fitness. Each example does contain comments

that explain clearly the purpose of the code and enabling the user to quickly get an idea on

creating the own class.

It is worth to mention that predefined classes do cover most of the use cases.

6.6. Retrieving evolved results

PonyGE2 comes with all necessary tools. Produced results are interpreted and sent to con-

sole and in parallel report is being saved in results directory. It contains a list of used parameters;

file containing description of the best entity — number of generation, phenotype, phenotype,

and fitness values on training and test data sets; PDF file containing graph of fitness thought the

generations; file containing numeric statistics about the process.

Such approach is a significant advantage, moving the users’ attention to developing best

experiment instead of taking care of preserving data and preparing report.

6.7. Examples

The package does contain several examples that may be used or transformed to receive an

easily working solution. Examples cover different areas of application

J. Skrzyński Selected Tools for Grammatical Evolution.

42 6.7. Examples

6.7.1. Regression

In this particular example, it is shown how to evolve function formulae that describes the

provided data set. For the purpose of testing the software, I have modified it to perform regres-

sion over a linear function. The given function was

f(x) = 2x+ 5

The data set contained two variables: first one x1 ∈< 1; 38 > ∧ x1 ∈ N and second one being

random integer value. The following parameters were used:

1 CACHE: True

2 CODON_SIZE: 100000

3 CROSSOVER: variable_onepoint

4 CROSSOVER_PROBABILITY: 0.75

5 DATASET_TRAIN: 2xp5/dataset.txt

6 DATASET_TEST: 2xp5/dataset.txt

7 DEBUG: False

8 ERROR_METRIC: mse

9 GENERATIONS: 50

10 MAX_GENOME_LENGTH: 500

11 GRAMMAR_FILE: supervised_learning/regression2.bnf

12 INITIALISATION: PI_grow

13 INVALID_SELECTION: False

14 MAX_INIT_TREE_DEPTH: 10

15 MAX_TREE_DEPTH: 17

16 MUTATION: int_flip_per_codon

17 POPULATION_SIZE: 500

18 FITNESS_FUNCTION: supervised_learning.regression

19 REPLACEMENT: generational

20 SELECTION: tournament

21 TOURNAMENT_SIZE: 2

22 VERBOSE: False

The file regression2.bnf had just been adjusted not to include non-existing variables.

Used BNF grammar is presented below:

1 <e> ::= <e>+<e>|

2 <e>-<e>|

3 <e>*<e>|

4 pdiv(<e>,<e>)|

5 psqrt(<e>)|

6 np.sin(<e>)|

7 np.tanh(<e>)|

J. Skrzyński Selected Tools for Grammatical Evolution.

6.7. Examples 43

Figure 6.1. Comparison of simplified evolved function to the desired func-

tion f(x) = 2x + 5. In the second plot both lines are so close to each

other that the blue is almost visually covered with the orange line, show-

ing a high precision of the gathered result. Plot has been prepared using

https://www.wolframalpha.com/

8 np.exp(<e>)|

9 plog(<e>)|

10 x[:, 0]|x[:, 1]|

11 <c><c>.<c><c>

12 <c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

As a result, PonyGE2 returned the evolved expression that is presented below. It does con-

tain some issues like using functions instead of constants, but after calculating the numeric

values of those functions and simplifying the formula the approximation is very close.

1 x[:, 0]-np.sin(66.59)+plog(83.09)+x[:, 0]

After applying the mentioned numerical approximation and simplifications, the evolved for-

mula may be stated as follows:

2x+ 4.99815

6.7.2. Program synthesis

The next example covers generation of valid Python code that should solve the problem

specified in the data set. To run the example, one need to execute the following command,

having current working directory set to src directory of PonyGE2 repository content.

1 python ponyge.py --parameters progsys.txt

J. Skrzyński Selected Tools for Grammatical Evolution.

44 6.7. Examples

Parameters file specify one of variants of the example presenting the general idea, but there

are also predefined other data sets located in folder PonyGE2/datasets/progsys. Com-

plementary grammars for data sets are saved in location PonyGE2/grammars/progsys.

This example shows a more complex approach, as inside its fitness function file there is a

mechanism that allows inclusion of additional supplementary code that is not directly related

to the solution but provides fitness calculating functionalities. For each data set complementary

file with evaluation code is prepared that set variable named quality.

6.7.2.1. Compare String Lengths

This instance of Program Synthesis example is the default one. The challenge here is to

evolve a program that will test if the length of provided strings meet the following condition

LEN(str1) < LEN(str1) < LEN(str1) [32]. Strings are provided to program inside variables

named in0, in1, in2.

Evolved code is being evaluated by previously mentioned helper code contained in

Compare String Lengths-Embed.txt. To be precise, thanks to function get_data

and format_program from progsys.py fitness function, the evolved code is placed inside

evolve function defined in 92 line of helper code exactly in place of <insertCodeHere>

in line 94. Knowing that, it is easy to understand the way the fitness is calculated.

Experiment had been executed using customized parameters to acquire better quality results.

Actual values of parameters are presented below.

1 CACHE: False

2 CODON_SIZE: 100000

3 CROSSOVER: variable_onepoint

4 CROSSOVER_PROBABILITY: 0.9

5 DATASET_TRAIN: Compare String Lengths/Train.txt

6 DATASET_TEST: Compare String Lengths/Test.txt

7 DEBUG: False

8 ERROR_METRIC: mse

9 GENERATIONS: 300

10 MAX_GENOME_LENGTH: 500

11 GRAMMAR_FILE: progsys/Compare String Lengths.bnf

12 INITIALISATION: PI_grow

13 INVALID_SELECTION: False

14 MAX_INIT_TREE_DEPTH: 10

15 MAX_TREE_DEPTH: 17

16 MUTATION: int_flip_per_codon

17 POPULATION_SIZE: 800

18 FITNESS_FUNCTION: progsys

19 REPLACEMENT: generational

J. Skrzyński Selected Tools for Grammatical Evolution.

6.8. General remarks 45

20 SELECTION: tournament

21 TOURNAMENT_SIZE: 5

22 VERBOSE: False

The evolved result is presented below. Fitness shows that the result is very good but judging

from humans point of view, the result is rather poor due to lack of explainability. There are

many possible causes of it.

1 i0 = int(); i1 = int(); i2 = int()

2 b0 = bool(); b1 = bool(); b2 = bool()

3 s0 = str(); s1 = str(); s2 = str()

4 res0 = bool()

5 res0 = getCharFromString(’eF’.lstrip(), abs(i1)) in in2.capitalize()

6 .rstrip().rstrip().rstrip(in2.lstrip().lstrip().capitalize().rstrip(

7 in2.capitalize().capitalize().rstrip().capitalize().rstrip().rstrip(

8 (in0 + ’dp’).capitalize().capitalize())))

9 if (’Z6’.lstrip((’ee>’ + in0)) + ’p;’).endswith(’y[e’):{:

10 i2 -= i2

11 :}

Created code seems to be very complicated and hard to read, but despite it, the function

seems to work with the provided data set. To solve the issue of readability, most of the publi-

cations suggest incorporating simplicity measure into fitness calculation. One of the simplest

methods is to measure length and assume that simplicity is inverse proportional to length. Then

one should change fitness accordingly to calculated simplicity of formula to maximize simplic-

ity.

Another possible approach is to allow more generations to be evaluated or adjust other

evolutionary parameters, allowing a bigger search space to be explored.

6.8. General remarks

The tool is very mature and up to date, compatible with latest versions of python and not

causing any issues with environment configuration. Documentation describes clearly the func-

tionalities and is accompanied by well-prepared examples. Code quality is very good — it is

clear and easy to read. Code is equipped with well written comments that give the user insights

on how the system works.

On the other hand, the tool is lacking tutorials dedicated for new users that would cover

first steps in using the software. The user then has to explore examples and carefully read a

significant part of documentation to reach the starting point and gain control over first exper-

iments. However, due to narrow specialization of the tool, level of the documentation should

J. Skrzyński Selected Tools for Grammatical Evolution.

46 6.8. General remarks

not be considered as a disadvantage as development of tutorials could be very time-consuming

for developers and available resources contain most of needed information, needing just a little

more time from user.

Taking all facts mentioned in this chapter into consideration, this tool can be pointed as

worth of attention and learning.

J. Skrzyński Selected Tools for Grammatical Evolution.

7. PyNeurGen

PyNeurGen [57] is a Python library, developed to provide end user with all functionalities

needed to develop hybrids of GE and neural networks. It comes with huge amount of features

but is not maintained properly. The code base is outdated.

7.1. Literature and sources of information

This tool is not very widely described among publications. Most of its description is con-

tained in its own documentation [57]. It is described as a tool for the creation of genetic-neural

hybrids that uses the concept of Grammatical Evolution to accomplish tasks related to the ge-

netic part of the hybrid solution.

Despite its main purpose of wrapping neural networks with grammatical evolution, accord-

ing to found materials [57], [64] it is capable of solving pure grammatical evolution problems

without engaging neural networks.

The tutorial presented in the documentation provides a comprehensive guide on how to

construct programs solving GE problems; however, one should still keep in mind extended

capabilities of the tool.

The tool has been added to https://pypi.org/ but the description does not contain

much information about the software. Additionally, the last update is written to be done in

2012. The project site is located under the following URL address: https://pypi.org/

project/pyneurgen/.

7.2. Documentation

Tool comes with own official website hosted on sourceforge.net under address

https://pyneurgen.sourceforge.net/tutorial_ge.html. It does contain an

introductory tutorial on how to develop programs using PyNeurGen. The website has also API

47

https://pypi.org/
https://pypi.org/project/pyneurgen/
https://pypi.org/project/pyneurgen/
sourceforge.net
https://pyneurgen.sourceforge.net/tutorial_ge.html

48 7.3. Maintenance

section that contains a brief description of all public functions, but is lacking detailed descrip-

tions of parameters and return types. Descriptions only grasp the main purpose of endpoint,

leaving the user without knowledge of exact use.

Code itself can be considered as another source of knowledge as it does contain a lot of

comments and is written in such a manner that having knowledge from documentation and

tutorial it is possible to gain lacking information; however, it does consume a lot of time and

degrades user experience.

7.3. Maintenance

Official repositories of the project seems not to have been updated since 2012 year, however

it is possible to find third parties who developed some additional features. For example reposi-

tory https://github.com/jacksonpradolima/PyNeurGen does contain a version

with last commit done in 2021, however, the author explicitly emphasizes no affiliation with

official project.

Searches performed using google search engine show that there are not many resources

handling the topic of PyNeurGen. Most of the results are connected with the official website or

the mentioned fork on GitHub that tries to provide some updates to the software. Unfortunately,

it shows that the community gathered around this tool is very small and inactive.

Additionally, the tool is lacking compatibility with latest versions of Python — it does re-

quire version 2 of Python, creating potential integration issues like using it in conjunction with

other libraries that require newer versions.

7.4. Installation

Firstly, as stated in the above section, it is worth mentioning that the library is not compatible

with new versions of Python. To use it, it is needed to have python 2 installed.

The package is available via pip package manager by use of the following command.

1 pip install pyneurgen

During tests, it went out that this method did not work smoothly. Authors’ documentation

suggests using another tool — easy_install

1 easy_install pyneurgen

This method also posed some difficulties. In order to install the library a clean virtual ma-

chine under Linux Ubuntu 20.04 was used and following steps were executed

J. Skrzyński Selected Tools for Grammatical Evolution.

https://github.com/jacksonpradolima/PyNeurGen

7.5. Usage 49

1 sudo apt-add-repository universe

2 sudo apt update

3 sudo apt install python2

4 curl https://bootstrap.pypa.io/pip/2.7/get-pip.py --output get-pip.py

5 python2 get-pip.py

6 PATH=$PATH:/home/pyneurgen/.local/bin

7 pip --version

8 sudo apt-get install unzip

9 sudo apt-get install python-setuptools

Then the sources of pyneurgen should be downloaded from the repository http://

sourceforge.net/projects/pyneurgen/files/ and then unzipped using the un-

zip tool that was installed by the commands provided above.

After following all the specified steps, library is ready to be used. The installation folder

contains examples that are located in the demo folder and can be run just like any other ordinary

Python program.

1 ~/pyneurgen-0.2/pyneurgen/demo$ python2 sample_grammatical_evolution.py

7.5. Usage

The tool is prepared as an external library for Python programming. To take advantage of

its features, user need to develop an own python application using provided functionalities.

The tool’s website https://pyneurgen.sourceforge.net/tutorial_ge.html

contains a tutorial on developing the application that is accompanied by an example in the

downloaded sources (pyneurgen-0.2/lib-files/pyneurgen/demo).

First step is to define the grammar in BNF notion. Documentation is lacking information

about defining the staring point for the grammar, but reverse engineering of the code shows

that the start symbol is hard coded in file genotypes.py in function get_preprogram()

to be “<S>”. Additionally, documentation [19] mentions that each non-terminal starting with

characters <S will preserve the indentation spaces to ensure Python syntax validity.

BNF grammar should ensure, for example by providing it in the starting point rule, that code

after evaluation provides value of fitness to the library. All code responsible for that calculation

is to be written by user inside grammar. To return fitness to the library, one would need to use

the following syntax.

1 self.set_bnf_variable(’<fitness>’, fitness)

Where fitness is a variable containing the final value of fitness. The delivered example

shows clearly how to use this functionality.

J. Skrzyński Selected Tools for Grammatical Evolution.

http://sourceforge.net/projects/pyneurgen/files/
http://sourceforge.net/projects/pyneurgen/files/
https://pyneurgen.sourceforge.net/tutorial_ge.html

50 7.6. Retrieving evolved results

Having that done, the user should generate GrammaticalEvolution object from

grammatical_evolution module. Then all settings are done using this object’s meth-

ods. It is worth to mention that this tool allows to specify different completion criteria than just

defined number of generations, namely tool allows specifying desired fitness that one want to

achieve — after reaching that value or better evolution stops.

A complete list of possible settings is presented in the documentation and the tutorial. Spe-

cial attention should be paid to the number of generations, the size of population, completion

criteria, the type of fitness optimization, and the size of the program. The last one is especially

important, as the length of the starting point is also considered as a component of program size.

In case of providing a maximal value that is less or equal to the length of the start symbol,

evolution may end with not fully terminated string, leading to execution errors.

After providing all of the settings, the user has to invoke create_genotypes() method

on a created GrammaticalEvolution object and then follow it by calling run on that

object. The last mentioned function provide evolution result as the return value that can be

directly printed into the standard output using print function.

It is worth to mention that PyNeurGen provide functionality of preserving vari-

ables that were calculated during phenotype evaluation. Namely, it is possible to use

set_bnf_variable function in BNF grammar with other variable name than <fitness>

to save additional data. Additionally, there also exists a mechanism for accessing that value to

include it in calculations. Following code presents mentioned functionalities

1 value = float(i) / float(100)

2 self.set_bnf_variable(’<value>’, value)

3

4 self.runtime_resolve(’<value>’, ’float’)

Presented code is taken directly from the example and shows how a value calculated inside

python code can be then passed into BNF rules, for example similarly to a constant value.

7.6. Retrieving evolved results

In PyNeurGen, as stated in the section above, results are retrieved as a return value of the li-

brary function that is responsible for starting the evolution routine. There is no such mechanism

as in PonyGE2 that creates report for user.

Below there is an example code snippet presenting running the model and retrieving the

evolved result.

1 # Be aware that it is Python 2.*!

2 # [...]

J. Skrzyński Selected Tools for Grammatical Evolution.

7.7. Example 51

3 ges = GrammaticalEvolution()

4 ges.create_genotypes()

5 print ges.run()

Documentation does not state it clearly, but reverse engineering of library code shows that

ges.run() returns the best individual from all of the evolved ones.

It is also possible to access a list of fitness values of all individuals sorted according to the

chosen strategy, using the following code.

1 print ges.fitness_list.sorted()

Additionally, to receive pure evolved program from the best individual’s genotype, one may

use the following piece of code

1 gene = ges.population[ges.fitness_list.best_member()]

2 print gene.get_program()

It is worth to mention that population is a list of Genotype objects. Then

fitness_list is an object of class derived from build in list. Each element of that

list is another list containing fitness value and member number in order as specified. Func-

tion best_member does return number of individual being best in terms of chosen fitness

strategy. It allows retrieving its genome from population.

7.7. Example

As it was mentioned in section 7.4 package contains single example of usage that presents

its abilities in field of GE. Example solves a problem described in documentation as follows:

"For values 0 to 99, what expression could be used to minimize:

abs(expression - pow(x, 3))"

Source: https://pyneurgen.sourceforge.net/tutorial_ge.

html [57]

The code comes with defined BNF grammar and starting point that contains necessary in-

structions that allow calculating and setting the fitness of the solution.

To run the example, one needs to navigate to /pyneurgen/demo and then call python

using the command presented below.

1 python2 sample_grammatical_evolution.py

The examples output contains a lot of information, including the fitness list described ear-

lier, individuals with their fitness value, and finally the best individual that is the result of an

evolutionary process.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://pyneurgen.sourceforge.net/tutorial_ge.html
https://pyneurgen.sourceforge.net/tutorial_ge.html

52 7.8. General remarks

7.8. General remarks

It appears that the tool is very outdated and does need a lot of work to prepare the en-

vironment. Last update of its repository on Sourceforge was done in 2012 year. The same

applies to its PyPI repository https://pypi.org/project/pyneurgen/#history.

Amount of examples is rather low in comparison to other tools. To be precise, there is only

single example covering Grammatical Evolution and two covering other part of library.

The process of preparing the experiment seems to be straightforward, but a bit limited at the

same time. User must prepare a grammar that is capable of generating python code that would

set <fitness> variable. There is also a mechanism allowing user to add variables that will be

added into BNF during evaluation. Additionally, one may observe that every experiment will

have a very similar structure that was presented in the code of the example. The user is then

only responsible for designing the BNF and adjusting the parameters of the evolution.

During experiments, it was discovered that, unfortunately, architectural choices made the

tool unsuitable for some purposes and therefore limited its potential uses. It appears that pro-

cessing large populations or many generations, the library often gets stuck. Additionally, defin-

ing grammar that prepares fitness calculation poses another challenge. Moreover, creating gram-

mar for complex solutions also tends to cause problems with correct parsing.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://pypi.org/project/pyneurgen/#history

8. gramEvol

gramEvol [44] is a package for R language that provides all necessary functionality to build

a GE model. It does require very little configuration and is very well documented. It is kept up

to date.

8.1. Literature

A primary source of knowledge for gramEvol is the article developed by the authors

of the tool [44]. Additionally, there exists another paper developed by the authors entitled

“Grammatical Evolution: A Tutorial using gramEvol” [45]. Technical aspects along with doc-

umentation are described in a PDF file served under the following URL https://cran.

r-project.org/web/packages/gramEvol/gramEvol.pdf [21]. There also exists

a website hosted on GitHub that contains the introductory tutorial [22]. Details about the

tool are available via its official package website https://cran.r-project.org/web/

packages/gramEvol/index.html.

The tool is also mentioned by a book on Grammatical Evolution entitled “Grammar-Based

Feature Generation for Time-Series Prediction” [12]. The tool is being referred to, by some

authors, as a state-of-the-art [53].

In terms of applications, there are a lot of examples of use cases involving Grammatical

Evolution implemented in gramEvol. To grasp just a bare idea of a huge variety of applications,

a few of the publications from different fields where it got applied, are listed here:

– Grammatical Evolution for Detecting Cyberattacks in Internet of Things Environ-

ments [3],

– Multi-Objective Allocation of COVID-19 Testing Centers: Improving Coverage and Eq-

uity in Access [73],

– Solution of Mixed-Integer Optimization Problems in Bioinformatics with Differential

Evolution Method [53].

53

https://cran.r-project.org/web/packages/gramEvol/gramEvol.pdf
https://cran.r-project.org/web/packages/gramEvol/gramEvol.pdf
https://cran.r-project.org/web/packages/gramEvol/index.html
https://cran.r-project.org/web/packages/gramEvol/index.html

54 8.2. Documentation

When it comes to internet resources handling the topic of the tool, there are not many avail-

able sources. One may encounter a couple of questions on stackoverflow.com,

that remained unanswered for 8 and 6 months (Last access 08-01-2023): https:

//stackoverflow.com/questions/76201565/ https://stackoverflow.

com/questions/76556657/. There also seems to exist some discussions on other

portals that were more active, one example could be found here: https://community.

rstudio.com/t/variations-of-genetic-algorithms/116110.

8.2. Documentation

As stated in the previous section there are many sources of knowledge for this tool, most of

them are listed below:

– https://cran.r-project.org/web/packages/gramEvol/index.html

– https://github.com/fnoorian/gramEvol?tab=readme-ov-file

– https://cran.r-project.org/web/packages/gramEvol/gramEvol.

pdf

– https://fnoorian.github.io/gramEvol/inst/doc/ge-intro.html

– https://www.jstatsoft.org/article/download/v071i01/1013

– https://rdrr.io/cran/gramEvol/

Documentation provides clear guides and tutorials that allow new users to quickly familiar-

ize themselves with functions delivered by the tool.

The tutorial provides additionally the theoretical foundations for beginners to understand

the mechanics behind the Grammatical Evolution.

8.3. Maintenance

The main code repository of the tool is located on GitHub. Statistics of the repository show

that the last commit was done in June 2023. Updates are not frequent, but are performed sys-

tematically.

There are 2 reported forks of the repository, but they seem to be inactive for a long period

of time.

As it was described above, there are some questions on stackoverflow.com but no

responses were provided.

J. Skrzyński Selected Tools for Grammatical Evolution.

stackoverflow.com
https://stackoverflow.com/questions/76201565/
https://stackoverflow.com/questions/76201565/
https://stackoverflow.com/questions/76556657/
https://stackoverflow.com/questions/76556657/
https://community.rstudio.com/t/variations-of-genetic-algorithms/116110
https://community.rstudio.com/t/variations-of-genetic-algorithms/116110
https://cran.r-project.org/web/packages/gramEvol/index.html
https://github.com/fnoorian/gramEvol?tab=readme-ov-file
https://cran.r-project.org/web/packages/gramEvol/gramEvol.pdf
https://cran.r-project.org/web/packages/gramEvol/gramEvol.pdf
https://fnoorian.github.io/gramEvol/inst/doc/ge-intro.html
https://www.jstatsoft.org/article/download/v071i01/1013
https://rdrr.io/cran/gramEvol/
stackoverflow.com

8.4. Installation 55

Available sources prove that the community of users concentrated around that tool are rather

scientists than usual developers. Most of the sources that mention using gramEvol are scientific

publications. Despite the closed character of the community, it appears that information on the

tool is easily available to users.

8.4. Installation

Installation is performed using the command given in the README file in the repository

and the getting started guides. The command is presented below.

1 install.packages("gramEvol")

After submitting it into the R console, the package is installed automatically. It is also pos-

sible to use the latest version of the GitHub repository. This can be accomplished by the use of

the following code listed also in the project repository.

1 if (!require("devtools")) install.packages("devtools")

2 devtools::install_github("fnoorian/gramEvol")

A test of the installation procedure was performed using version 4.3.2 of R for the Windows

operating system.

8.5. Usage

To begin with, the user should define a grammar using CreateGrammar function that

takes as parameters a list of rules and the starting symbol. If no starting symbol is set, then the

first rule in the list is treated as the starting point.

The next step is defining the fitness function that will be used to rate the individuals. To

do so, the data set should also be declared. The function should take evolved expression as a

parameter and return the value of fitness.

Having prepared the fitness function and the grammar, it is time to code the settings. It is

done as parameters of GrammaticalEvolution(...). Few options are presented in the

following example taken from the introductory tutorial.

1 GrammaticalEvolution(grammarDef, evalFunc,

2 numExpr = 1,

3 max.depth = GrammarGetDepth(grammarDef),

4 startSymb = GrammarStartSymbol(grammarDef),

5 seqLen = GrammarMaxSequenceLen(grammarDef, max.depth, startSymb),

6 wrappings = 3,

7 suggestions = NULL,

J. Skrzyński Selected Tools for Grammatical Evolution.

56 8.6. Retrieving evolved results

8 optimizer = c("auto", "es", "ga"),

9 popSize = 8, newPerGen = "auto", elitism = 2,

10 mutationChance = NA,

11 iterations = 1000, terminationCost = NA,

12 monitorFunc = NULL,

13 plapply = lapply, ...)

As a great advantage of the tutorial, it can be pointed out that names are self-explanatory. It

can be seen that the user has full control of most of the important parameters of the evolutionary

process.

To begin with, popSize does describe the size of the population, iterations sets the

number of generations, max.depth sets the maximal depth of search, it is important to know

that by default it is set to the number of rules in the grammar. To find a full description, one may

refer to the documentation [21].

Results are then stored in a created variable and can be retrieved using the code presented

in the example. There is no mechanism for auto-saving the achieved result.

8.6. Retrieving evolved results

As was mentioned in the section above, the package had not been equipped with automatic

generation of reports. The user is the one who is responsible for designing data saving routine.

The value received as a result of calling the GrammaticalEvolution(...) may be

assigned to a variable, that can be directly printed into the console, as presented below.

1 ge <- GrammaticalEvolution(...)

2 print(ge)

Such a piece of code prints information on the result, including the expression, fitness value,

and the number of generation. However, it is not the only way to get the result. It is possible to

access the best expression directly using the following code.

1 print(ge$best$expressions)

Its value can be assigned to another variable and reused in following instructions to prepare

other presentations or conduct additional calculations.

8.7. Example

The repository does contain an example of an evolving formula for Kepler’s law based on a

very small set of records. For the reader’s convenience, the code is presented below.

J. Skrzyński Selected Tools for Grammatical Evolution.

8.7. Example 57

1 library("gramEvol")

2

3 grammarDef <- CreateGrammar(list(

4 expr = grule(op(expr, expr), func(expr), var),

5 func = grule(sin, cos, log, sqrt),

6 op = grule(‘+‘, ‘-‘, ‘*‘),=

7 var = grule(distance, distance^n, n),

8 n = gvrule(1:4)

9))

10

11 planets <- c("Venus", "Earth", "Mars", "Jupiter", "Saturn","Uranus")

12 distance <- c(0.72, 1.00, 1.52, 5.20, 9.53, 19.10)

13 period <- c(0.61, 1.00, 1.84, 11.90, 29.40, 83.50)

14

15 SymRegCostFunc <- function(expr) {

16 result <- eval(expr)

17

18 if (any(is.nan(result)))

19 return(Inf)

20

21 return (mean(log(1 + abs(period - result))))

22 }

23 ge <- GrammaticalEvolution(grammarDef, SymRegCostFunc,iterations = 50)

24 print(ge)

25

26 best.expression <- ge$best$expression

27 print(ge$best$expressions)

28 print(data.frame(distance, period, Kepler = sqrt(distance^3),

29 GE = eval(best.expression)))

Running the given code goes smoothly and results in printing the resulting data in the con-

sole. The result is astonishing, as it predicts exactly the real formula.

1 distance period Kepler GE

2 1 0.72 0.61 0.6109403 0.6109403

3 2 1.00 1.00 1.0000000 1.0000000

4 3 1.52 1.84 1.8739819 1.8739819

5 4 5.20 11.90 11.8578244 11.8578244

6 5 9.53 29.40 29.4197753 29.4197753

7 6 19.10 83.50 83.4737743 83.4737743

Results are also returned in a surprisingly short time in comparison to other tested tools. It

seems to be the best of the predefined examples among all the presented tools, achieving the

best time and accuracy. On the other hand, this example does contain a grammar that provides

J. Skrzyński Selected Tools for Grammatical Evolution.

58 8.8. General remarks

more knowledge than just a general description of the shape of every mathematical equation,

meaning that more expert knowledge is introduced into the model than in cases presented by

other tools. Nevertheless, it is a well-prepared example showing the potential of the tool.

Additionally, the execution was stable and did not require any additional adjustments or

fixes.

Tutorials provide also information that it is possible to equip the program with a verbose

output. To do so, a monitoring function needs to be defined and provided to the final call. The

code below presents the mentioned modification.

1 customMonitorFunc <- function(results){

2 cat("-------------------\n")

3 print(results)

4 }

5 ge <- GrammaticalEvolution(grammarDef, SymRegCostFunc, iterations = 50,

↪→ monitorFunc = customMonitorFunc)

6 print(ge)

It causes the information about each generation, to be printed out in the console window.

Such behavior may be useful when conducting experiments with a larger number of generations,

to examine if the process is following the desired path.

8.8. General remarks

The use of the tool is very straightforward and intuitive. It comes with well-written tutorials

describing foundations and basic functionalities. Performing the experiment does not require

much work to be done. The final user is only requested to provide really necessary information

describing the experiment without the boilerplate code.

Documentation is detailed enough to provide all necessary information to deliver answers

to all integration-related questions, not forcing user to do the reverse engineering of the tool.

Resources do contain the theory supporting the description of the tool and ensuring the right

understanding of used terms.

Prepared programs are executed stably, achieving also astonishing time consumption. Ad-

ditionally, modifications are made easy, allowing users to define their own fitness function,

without a need to know the exact mechanics of the package.

As another advantage, the simplicity of the installation process could be pointed out. It does

require a single command that is clearly described and provided in the installation instructions.

The tool’s quality is proven by a number of projects that do use it for real-life applications.

Additionally, it ensures the presence of easily available implementation examples.

J. Skrzyński Selected Tools for Grammatical Evolution.

8.8. General remarks 59

On the other hand, chosen language, is not currently the leading one in terms of popular-

ity, as shown in the survey by Stackoverflow.com [48]. The presented data clearly show that

Python does more than 10 times better in terms of popularity than R. However, despite the low

overall popularity, it is one of most popular languages for statistical calculations, used by field

experts [50]. It is claimed by some resources [31] that it does pose issues for new users, com-

ing with "steep at beginning learning curve" but it does pay off in the future use. Additionally,

currently the popularity of R is rising [51] and [50].

To conclude, one may say that gramEvol is a very mature tool that comes with a production-

ready set of functionalities and user-friendly documentation and guides. Usage could pose some

issues for new users who are not yet familiar with R language, but provided examples and

documentations allow even non R users to grasp idea about usage of the tool.

J. Skrzyński Selected Tools for Grammatical Evolution.

60 8.8. General remarks

J. Skrzyński Selected Tools for Grammatical Evolution.

9. Other available tools

This section does present a brief overview of other available tools, with some comments

regarding their quality.

9.1. GRAPE

Tool, published in 2022 in an article entitled “GRAPE: Grammatical Algorithms in Python

for Evolution” [11]. It is developed on top of the DEAP package [26] which is a Python frame-

work for evolutionary computations.

The source code of the tool is available on GitHub https://github.com/bdsul/

grape. The tool seems to be still maintained, having the last commit done 3 weeks ago. There

are also 7 forks of its repository, proving that it has some community working around it.

The repository does contain also examples of usage, however, a quick examination shows

that these examples are unfortunately quite complicated and lengthy, therefore time-consuming

to fully analyze.

Additionally, there is no extensive documentation about the tool easily available, making it

hard to get started using the tool.

To conclude, GRAPE is worth attention in the coming years. It is written in one of the

leading languages — Python, it uses a framework developed for Genetic Programming that

provides clear documentation and seems to be a mature and maintained library used by a huge

community. Additionally, GRAPE is said to be comparable with PonyGE2 [11].

9.2. GELab

GELab [30] is a grammatical Evolution tool designed for Matlab. The paper was published

in 2021, however, other sources claim that the tool itself has been available since 2018. Its

sources can be found in GitHub repository https://github.com/adilraja/GELAB.

61

https://github.com/bdsul/grape
https://github.com/bdsul/grape
https://github.com/adilraja/GELAB

62 9.3. PonyGE

The mentioned publication does contain an extensive explanation of the tool, accompanied

by theory standing behind Grammatical Evolution.

The author claims that originally it was designed as a tool for Java, but then transformed

into a Matlab tool.

Activity on GitHub shows that the tool is probably no longer maintained, not having any

commits for the last 4 years. Additionally, there are not many available resources that describe

the tool, other than the mentioned publication.

To conclude the tool is quite modern however lacks developer support, but still, it is worth

of attention of Matlab users.

9.3. PonyGE

Predecessor of PonyGE2. Tool intended to be kept simple and contained in a single file.

Today it is available via Google Code Archive https://code.google.com/archive/

p/ponyge/. It comes with 3 wiki pages that describe the installation process and one use case.

In a README file, the author claims compatibility with Python 2 and 3. Additionally, the

file contains a brief description of tool usage.

Sources do contain comments suggesting that there are some improvements needed. Addi-

tionally, the tool is no longer maintained and there are no easily available sources describing it.

Wikipedia claims the tool was first published in 2010 [64].

The tool is a simple example of Grammatical Evolution implementation, good for reverse

engineering such a tool, but it is not the best choice for large-size projects.

9.4. AGE

AGE is yet another Grammatical Evolution implementation. This one was prepared in C and

Lua, however, the current version of the author’s website claims switching C to C++.

Documentation for this tool is contained mainly in the author’s bachelor thesis [42] and

newer features are described in an additional PDF file. Moreover, the author’s master’s the-

sis [43] also references the project. All official sources are available via the author’s website

http://nohejl.name/age.

A quick look at the sources shows that the library could be said to be complex. However,

the mentioned documentation contains a simple description of the way the user should proceed.

AGE is an interesting example of GE software, but it lacks community support to become a

popular choice among the users.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://code.google.com/archive/p/ponyge/
https://code.google.com/archive/p/ponyge/
http://nohejl.name/age

9.5. GenClass 63

Additionally the tool is lacking updates. The last described one is dated to have been up-

loaded on 23 Novermber 2011. No further activity around the tool is described on author’s

website.

9.5. GenClass

GenClass [4] is a simple tool written in C++, that’s goal is to create simple data classification

scripts, using Grammatical Evolution. Its source is freely distributed via GitHub repository

https://github.com/itsoulos/GenClass.

The project repository does have the wiki containing all the necessary information to begin

preparing the own experiments. The repository also contains examples of use and example

output accompanied by a brief description.

The tool received the last update in September 2021. There are a few online sources that

mention the tool, mostly directly connected with the GenClass. It means that the tool is probably

no longer maintained and does not have a community that supports it.

GenClass is an interesting tool, that is worth remembering. It could pose some issues due to

lack of maintenance, but it may be useful in data classification problems. There is documenta-

tion covering enough details to get familiar with basic use cases.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://github.com/itsoulos/GenClass

64 9.5. GenClass

J. Skrzyński Selected Tools for Grammatical Evolution.

10. Applications described from theoretical point of
view

This chapter is going to present a few of the theoretical fields that may benefit from using

the GE approach of searching for the solution, to familiarize the reader with the potential of the

GE.

10.1. Symbolic regression

Symbolic regression [5], [68] could be pointed out as an obvious example of Grammatical

Evolution’s application in theoretical research.

Symbolic regression is described as constructing a mathematical expression that fits best the

provided dataset.

A grammatical evolution model can be prepared to realize that task, as it was shown by some

examples provided with GE tools. It does require specifying a correct grammar, that would

describe the allowed expressions, and a fitness calculation method that would rate the received

expression.

The efficiency of using GE in this application was clearly visible while evolving the Kepler’s

Law from a little dataset by use of gramEvol.

10.2. Extracting rules for a classifier from delivered dataset

This section describes use of GE to produce the best rule set that would accomplish the

classification task.

One of the described tools is designed especially to accomplish this single task [4] — Gen-

Class (https://github.com/itsoulos/GenClass). It provides the functionality of

creating C++ classifier as a result of operations on the dataset.

65

https://github.com/itsoulos/GenClass

66 10.3. Generating the architecture of neural networks

10.3. Generating the architecture of neural networks

Right architecture is crucial for neural network performance and is often a subject of re-

search. There are many established guidelines on defining models by hand, but GE may help to

automatize the whole procedure.

Defining a correct grammar that would describe the potential structure of the neural network

and the fitness function that takes into consideration time efficiency and accuracy metrics would

allow GE to automatically search for the best possible neural network architecture.

There are available sources presenting such an approach [10], [37].

10.4. Creating a syntactically valid program

GE tools are often prepared mostly for the creation of code that gets executed and evaluated.

It allows huge flexibility in terms of applications. The user can provide input data in literary any

shape and generate a fully functional computer program that performs a given task identified by

the fitness function.

10.5. Conclusion on theoretical applications

GE provides enormous flexibility in terms of its applications, as most of the problems would

be able to be expressed as the GE models. In this chapter, there were presented a few examples

to prove that idea.

J. Skrzyński Selected Tools for Grammatical Evolution.

11. Real life applications

This chapter is meant to describe a few cases where GE models were applied to a specific

case.

11.1. Discovery of relations between data and retrieving the

original formula

There are known cases of discovering the relation between data, without prior knowledge

or theoretical foundations, based purely on empirical data. This is very similar to the theoretical

concept of symbolic regression.

As an example of a formula that was achieved based only on the data was the discovery of

Ohm’s Law [66].

Today, thanks to the wide availability of computing power, algorithms like GE could reduce

the time and effort needed for such discoveries and further optimize results. The example pre-

sented by documentation of gramEvol seems to prove also the robustness of this approach even

if the size of the dataset is limited.

11.2. Solving models describing the placement of facilities

The problem of finding the best location of facilities can be often reduced to multi-objective

optimization that can be then subjected to GE approach.

There are examples of usage of presented tools in such cases [73].

11.3. Detecting cybersecurity threats

One of the publications suggests that the ability of GE to evolve a program in any pro-

gramming language can be utilized to create software capable of detecting cyberattacks on IoT

devices [3].

67

68 11.3. Detecting cybersecurity threats

The paper shows a study on the case, development of solutions and finally proves the ability

of Ge to evolve a program capable of identifying the attack that it was not trained on.

J. Skrzyński Selected Tools for Grammatical Evolution.

12. Estimation of the function counting primes using
PonyGE2

Function π(x) is defined as the number of prime numbers less or equal to x [55] [62]. Due

to it nature, there is currently no way to precisely calculate its value.

Grammatical Evolution may be used then to evolve a formula that will try to approximate

the function π.

12.1. Used grammar

For the purpose of evolving formulae, approximating π(x) a grammar describing mathe-

matical expressions is needed. For the purpose of demonstration, grammar that comes with

PonyGE2 will be used with slight modification. For demonstration of this application, PonyGE2

will be used.

1 <e> ::= <e>+<e>|

2 <e>-<e>|

3 <e>*<e>|

4 pdiv(<e>,<e>)|

5 psqrt(<e>)|

6 np.sin(<e>)|

7 np.tanh(<e>)|

8 np.exp(<e>)|

9 plog(<e>)|

10 x[:, 0]|

11 <c><c>.<c><c>

12 <c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

69

70 12.2. Data set

12.2. Data set

The following features of PonyGE2, a mechanism of data set loaded from tabulation sepa-

rated text file, will be used. To generate the dataset, a c++ program is provided. The program

has a hard-coded array of prime numbers that it can refer during operation to optimize time

consumption.

1 #include <iostream>

2

3 int list_of_prime[] = {/* Here goes hard coded primes in ascending order */

↪→ };

4

5 const int num_of_primes = sizeof(list_of_prime)/sizeof(int);

6 const int max_prime = list_of_prime[num_of_primes-1];

7

8 int main(){

9

10 std::cout<<"x0\tresponse"<<std::endl;

11

12 for(int counter = 0, it=0, i = 0; i<=max_prime && it < num_of_primes; i

↪→ ++){

13 int next_prime = list_of_prime[it];

14 if(i>=next_prime){

15 counter++;

16 it++;

17 }

18 std::cout<<i<<"\t"<<counter<<std::endl;

19 }

20

21 return 0;

22 }

Prime numbers may be taken from one of the internet sources. Generated data set quality is

dependent on number of prime numbers. Data generated by the program should be stored in a

text file that will be later refereed in the parameters file.

12.3. PonyGE2 parameters

Below, all parameters of the experiment are listed. Most of them are taken directly from the

regression example provided in the repository of PonyGE2.

1 CACHE: True

J. Skrzyński Selected Tools for Grammatical Evolution.

12.4. Results 71

2 CODON_SIZE: 100000

3 CROSSOVER: variable_onepoint

4 CROSSOVER_PROBABILITY: 0.75

5 DATASET_TRAIN: prime_counting/Train.txt

6 DATASET_TEST: prime_counting/Test.txt

7 DEBUG: False

8 ERROR_METRIC: mse

9 GENERATIONS: 400

10 MAX_GENOME_LENGTH: 500

11 GRAMMAR_FILE: supervised_learning/regression-prime.bnf

12 INITIALISATION: PI_grow

13 INVALID_SELECTION: False

14 MAX_INIT_TREE_DEPTH: 10

15 MAX_TREE_DEPTH: 17

16 MUTATION: int_flip_per_codon

17 POPULATION_SIZE: 500

18 FITNESS_FUNCTION: supervised_learning.regression

19 REPLACEMENT: generational

20 SELECTION: tournament

21 TOURNAMENT_SIZE: 2

22 VERBOSE: False

12.4. Results

During execution of the experiment, multiple functions that achieved shape similar to π(x)

were evolved. An issue of formulae evolved using this method is their complexity. Formulas

have lots of nested operations. one of the achieved results is presented below:

1 2 sqrt(x) + x/(tanh((x + sqrt(tanh(78.45) sin(51.98)) x - log(sqrt

↪→ (84.76) + 47.5))/exp(log(log(69.92) + 7.51)) x) + sqrt(38.86) + log(

↪→ log(x - log(sin(x) + 15.6) tanh(tanh(sqrt(x))) tanh(sin(log(x)) +

↪→ 69.37) x)))

As it can be seen in the figure 12.1 generated solution does have a similar shape to the de-

sired function, however unfortunately the approximation is not perfect and there are differences

between predicted values and the actual. Therefor further executions of experiment with higher

number of generations were performed and following results were obtained:

1 x/(ln(x/(ln(ln(92.89-sin(x)+x*x+sin(x)-64.03*sqrt(x)*ln(exp(sin(89.77))

↪→))*sqrt(sin(19.94))))))

The results as for a simple experiment are rather satisfying, but the differences are still

present. Table 12.1 shows comparison of function values for two values of x showing that the

J. Skrzyński Selected Tools for Grammatical Evolution.

72 12.4. Results

Figure 12.1. First generated solution in comparison to actual function prepared

using https://www.wolframalpha.com/. In the second pair of plots blue and

orange lines are almost indistinguishible. To examine closely the plot one may

use url https://www.wolframalpha.com/input?i=pi%28x%29+

vs+2sqrt%28x%29%2Bx%2F%28tanh%28%28x%2Bsqrt%28tanh%

2878.45%29sin%2851.98%29%29x-log%28sqrt%2884.76%

29%2B47.5%29%29%2Fexp%28log%28log%2869.92%29%2B7.

51%29%29x%29%2Bsqrt%2838.86%29%2Blog%28log%28x-log%

28sin%28x%29%2B15.6%29tanh%28tanh%28sqrt%28x%29%29%

29tanh%28sin%28log%28x%29%29%2B69.37%29x%29%29%29.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://www.wolframalpha.com/input?i=pi%28x%29+vs+2sqrt%28x%29%2Bx%2F%28tanh%28%28x%2Bsqrt%28tanh%2878.45%29sin%2851.98%29%29x-log%28sqrt%2884.76%29%2B47.5%29%29%2Fexp%28log%28log%2869.92%29%2B7.51%29%29x%29%2Bsqrt%2838.86%29%2Blog%28log%28x-log%28sin%28x%29%2B15.6%29tanh%28tanh%28sqrt%28x%29%29%29tanh%28sin%28log%28x%29%29%2B69.37%29x%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+2sqrt%28x%29%2Bx%2F%28tanh%28%28x%2Bsqrt%28tanh%2878.45%29sin%2851.98%29%29x-log%28sqrt%2884.76%29%2B47.5%29%29%2Fexp%28log%28log%2869.92%29%2B7.51%29%29x%29%2Bsqrt%2838.86%29%2Blog%28log%28x-log%28sin%28x%29%2B15.6%29tanh%28tanh%28sqrt%28x%29%29%29tanh%28sin%28log%28x%29%29%2B69.37%29x%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+2sqrt%28x%29%2Bx%2F%28tanh%28%28x%2Bsqrt%28tanh%2878.45%29sin%2851.98%29%29x-log%28sqrt%2884.76%29%2B47.5%29%29%2Fexp%28log%28log%2869.92%29%2B7.51%29%29x%29%2Bsqrt%2838.86%29%2Blog%28log%28x-log%28sin%28x%29%2B15.6%29tanh%28tanh%28sqrt%28x%29%29%29tanh%28sin%28log%28x%29%29%2B69.37%29x%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+2sqrt%28x%29%2Bx%2F%28tanh%28%28x%2Bsqrt%28tanh%2878.45%29sin%2851.98%29%29x-log%28sqrt%2884.76%29%2B47.5%29%29%2Fexp%28log%28log%2869.92%29%2B7.51%29%29x%29%2Bsqrt%2838.86%29%2Blog%28log%28x-log%28sin%28x%29%2B15.6%29tanh%28tanh%28sqrt%28x%29%29%29tanh%28sin%28log%28x%29%29%2B69.37%29x%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+2sqrt%28x%29%2Bx%2F%28tanh%28%28x%2Bsqrt%28tanh%2878.45%29sin%2851.98%29%29x-log%28sqrt%2884.76%29%2B47.5%29%29%2Fexp%28log%28log%2869.92%29%2B7.51%29%29x%29%2Bsqrt%2838.86%29%2Blog%28log%28x-log%28sin%28x%29%2B15.6%29tanh%28tanh%28sqrt%28x%29%29%29tanh%28sin%28log%28x%29%29%2B69.37%29x%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+2sqrt%28x%29%2Bx%2F%28tanh%28%28x%2Bsqrt%28tanh%2878.45%29sin%2851.98%29%29x-log%28sqrt%2884.76%29%2B47.5%29%29%2Fexp%28log%28log%2869.92%29%2B7.51%29%29x%29%2Bsqrt%2838.86%29%2Blog%28log%28x-log%28sin%28x%29%2B15.6%29tanh%28tanh%28sqrt%28x%29%29%29tanh%28sin%28log%28x%29%29%2B69.37%29x%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+2sqrt%28x%29%2Bx%2F%28tanh%28%28x%2Bsqrt%28tanh%2878.45%29sin%2851.98%29%29x-log%28sqrt%2884.76%29%2B47.5%29%29%2Fexp%28log%28log%2869.92%29%2B7.51%29%29x%29%2Bsqrt%2838.86%29%2Blog%28log%28x-log%28sin%28x%29%2B15.6%29tanh%28tanh%28sqrt%28x%29%29%29tanh%28sin%28log%28x%29%29%2B69.37%29x%29%29%29

12.4. Results 73

Figure 12.2. Second generated solution in comparison to actual function pre-

pared using https://www.wolframalpha.com/. Closer examination is possible

by use of this url: https://www.wolframalpha.com/input?i=pi%

28x%29+vs+x%2F%28ln%28x%2F%28ln%28ln%2892.89-sin%

28x%29%2Bx*x%2Bsin%28x%29-64.03*sqrt%28x%29*ln%

28exp%28sin%2889.77%29%29%29%29*sqrt%28sin%2819.94%

29%29%29%29%29%29.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://www.wolframalpha.com/input?i=pi%28x%29+vs+x%2F%28ln%28x%2F%28ln%28ln%2892.89-sin%28x%29%2Bx*x%2Bsin%28x%29-64.03*sqrt%28x%29*ln%28exp%28sin%2889.77%29%29%29%29*sqrt%28sin%2819.94%29%29%29%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+x%2F%28ln%28x%2F%28ln%28ln%2892.89-sin%28x%29%2Bx*x%2Bsin%28x%29-64.03*sqrt%28x%29*ln%28exp%28sin%2889.77%29%29%29%29*sqrt%28sin%2819.94%29%29%29%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+x%2F%28ln%28x%2F%28ln%28ln%2892.89-sin%28x%29%2Bx*x%2Bsin%28x%29-64.03*sqrt%28x%29*ln%28exp%28sin%2889.77%29%29%29%29*sqrt%28sin%2819.94%29%29%29%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+x%2F%28ln%28x%2F%28ln%28ln%2892.89-sin%28x%29%2Bx*x%2Bsin%28x%29-64.03*sqrt%28x%29*ln%28exp%28sin%2889.77%29%29%29%29*sqrt%28sin%2819.94%29%29%29%29%29%29
https://www.wolframalpha.com/input?i=pi%28x%29+vs+x%2F%28ln%28x%2F%28ln%28ln%2892.89-sin%28x%29%2Bx*x%2Bsin%28x%29-64.03*sqrt%28x%29*ln%28exp%28sin%2889.77%29%29%29%29*sqrt%28sin%2819.94%29%29%29%29%29%29

74 12.4. Results

x f2(x) π(x)

100 26.0574 25

1400 222.801 222

Table 12.1. Values of π(x) in comparison to values of second evolved function

evolved function is close but does not describe the function exactly. To gain a visual overview,

one may refer to figure 12.2.

Results of the experiment are even more promising when it comes to execution time. Evolv-

ing second formula took only 143,7s. Judging by achieved effect in reference to consumed re-

sources, it may be worth to further increase precision by allowing exploration of a larger search

space. This may result in creating even better approximation of the given function. Additionally,

one may provide a larger dataset to maintain the shape of the function throughout a wider range

of values.

J. Skrzyński Selected Tools for Grammatical Evolution.

13. Estimation of the standard acceleration gravity
value from simple pendulum measurements

13.1. Introduction and data set

By transforming physics formulas, one may derive the following formula describing gravi-

tational acceleration g in terms of values that can be measured using simple pendulum.

g =
4π2l

T 2

The goal of this experiment is evolving such formula with small data set containing value of

l being the length of pendulum and its period T accompanied by value of g taken from constants

table.

The dataset had been prepared using measurements performed on a simple pendulum moved

from the equilibrium point by a small angle, allowing sin(α) approximation to make the above

formula valid. Time measurement were manually triggered. Each measurement was taken using

10 full movements to limit possible error.

Prepared data set is presented in table 13.1. As data set does not provide enough data — it

does contain only one pendulum length — it may be required to enrich it and retry the experi-

ment

13.2. Used grammar

A similar grammar to the one used in the experiment presented in chapter 12, that was

adopted from PonyGE2 example code, was used here, with slight modification, allowing con-

stant pi.

1 <e> ::= <e>+<e>|

2 <e>-<e>|

3 <e>*<e>|

4 pdiv(<e>,<e>)|

75

76 13.3. Used parameters

T [s] l[m] g[ms−2]

1.447 0.522 9.80665

1.459 0.522 9.80665

1.443 0.522 9.80665

1.447 0.522 9.80665

1.441 0.522 9.80665

1.444 0.522 9.80665

1.434 0.522 9.80665

1.453 0.522 9.80665

Table 13.1. Data set prepared based on real measurements and real value of g

taken from https://physics.nist.gov/cgi-bin/cuu/Value?gn

5 psqrt(<e>)|

6 np.sin(<e>)|

7 np.tanh(<e>)|

8 np.exp(<e>)|

9 plog(<e>)|

10 x[:, 0]|x[:, 1]|

11 <c><c>.<c><c> |

12 np.pi

13 <c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Then let x0 be the period T given in seconds and let x1 be the length of pendulum l expressed

as meters.

13.3. Used parameters

Below, parameters used for the evolution are presented. For the purpose of the test popula-

tion of size, 500 is going to be evolved for 400 generations.

1 CACHE: True

2 CODON_SIZE: 100000

3 CROSSOVER: variable_onepoint

4 CROSSOVER_PROBABILITY: 0.75

5 DATASET_TRAIN: pendulum/Train.txt

6 DATASET_TEST: pendulum/Test.txt

J. Skrzyński Selected Tools for Grammatical Evolution.

13.4. Achieved results 77

7 DEBUG: False

8 ERROR_METRIC: mse

9 GENERATIONS: 400

10 MAX_GENOME_LENGTH: 500

11 GRAMMAR_FILE: supervised_learning/regression-pendulum.bnf

12 INITIALISATION: PI_grow

13 INVALID_SELECTION: False

14 MAX_INIT_TREE_DEPTH: 10

15 MAX_TREE_DEPTH: 17

16 MUTATION: int_flip_per_codon

17 POPULATION_SIZE: 500

18 FITNESS_FUNCTION: supervised_learning.regression

19 REPLACEMENT: generational

20 SELECTION: tournament

21 TOURNAMENT_SIZE: 2

22 VERBOSE: False

13.4. Achieved results

After running the program, the formula provided below had been returned. Execution tool

236 seconds. The first remark could be that the formula is much more complicated than it is

desired to be.

1 psqrt(97.17-np.tanh(plog(71.76-np.sin(np.tanh(00.87))+plog(x[:, 0])*np.tanh

↪→ (psqrt(np.pi68.67*np.pi)+x[:, 1])*pdiv(np.pi,87.89-plog(40.97)+np.sin

↪→ (40.97)+psqrt(np.sin(np.pi))+np.exp(np.pi)))))

To be able to quickly transform provided results into more readable form

wolframalpha.com will be used. However, to use it, it is required to transform

the formula. There are functions like pdiv or plog that are defined inside PonyGE2

src/utilities/fitness/math_functions.py. Additionally, functions from

NumPy should be described in a way the WolframAlpha tool is able to understand. The

resulting prompt is presented below.

1 sqrt(97.17-tanh(log(71.76-sin(tanh(00.87))+log(T)*tanh(sqrt(pi-68.67*pi)+l

↪→])*

2 (pi/(87.89-log(40.97)+sin(40.97)+sqrt(sin(pi))+exp(pi))))))

Having that transformed with WolframAlpha, one receives the formula presented below. It

appears that it is still very complicated and does not resemble the desired one.

J. Skrzyński Selected Tools for Grammatical Evolution.

wolframalpha.com

78 13.5. Enriched data set

√
97.17− −1 + (71.1147 + (0.0293089i) log(T) tan((14.5805 + 0i)− il))2

1 + (71.1147 + (0.0293089i) log(T) tan((14.5805 + 0i)− il))2

It appears that as anticipated data set does not contain enough data to produce an accurate

result. This may be the case, as really there is just a single value l, g and T with noise To solve

the issue, artificial measurements will be introduced.

13.5. Enriched data set
To tackle the issue of too simple data set, additional records will be reproduced artificially.

Data should be supplemented with records that will emphases the relationship between those

values, so different pendulums should be used.

Calculations will be performed with predefined lengths, therefor formula for period T

should be derived.

T =

√
4π2l

g

Data prepared using this method is presented in table 13.2. These records describe the re-

lation better but still there is possible issue — one may point out that in this scenario, the best

formula describing g can be stated as follows.

g(l, T) = 9.80665

Thanks to the nature of GE this vulnerability of data set may not get exploited allowing

valuable result to be obtained.

As a quick conclusion, it may be said that the dataset should contain a representative sample

of the whole data. Providing only a subset may have a negative effect on the produced results,

as not all characteristic features of the data may be included in the subset of data. As an easy

theoretical example, symbolic regression may be used. Let us assume that one is willing to

achieve a polynomial of 5th degree specifying only 2 points and grammar that describes any

mathematical expression, then there are infinitely many possible functions that come through

these two points and there is no defined way to determine the right one.

13.6. Second attempt
Second iteration had been executed, however evolution on enriched data set does not pro-

vide satisfactory results. After 365 seconds best genome was returned with surprisingly good

J. Skrzyński Selected Tools for Grammatical Evolution.

13.6. Second attempt 79

T [s] l[m] g[ms−2]

1.447 0.522 9.80665

1.459 0.522 9.80665

1.443 0.522 9.80665

1.447 0.522 9.80665

1.441 0.522 9.80665

1.444 0.522 9.80665

1.434 0.522 9.80665

1.453 0.522 9.80665

0.25 1.003204646 9.80665

0.75 1.737601418 9.80665

1 2.006409293 9.80665

1.25 2.243233784 9.80665

1.5 2.457339491 9.80665

1.75 2.654230008 9.80665

2 2.837491233 9.80665

2.25 3.009613939 9.80665

2.5 3.172411642 9.80665

Table 13.2. Data set from table 13.1 with additional artificially computed re-

sults to improve generated results

J. Skrzyński Selected Tools for Grammatical Evolution.

80 13.7. Conclusion

fitness value being equal to 2.5400306357448104 ∗ 10−22, however it lacks simplicity therefore

regardless of high accuracy that was obtained it cannot be considered as a good solution. The

phenotype of solution is presented below:

1 Phenotype: psqrt(plog(np.exp(96.17)+np.exp(88.27)+pdiv(85.02*np.exp(x[:,

↪→ 0])-69.29,np.pi)+np.exp(x[:, 0])-pdiv(pdiv(pdiv(x[:, 1],14.87),60.10)

↪→ ,plog(03.16)*psqrt(np.exp(42.30))+46.14)+np.exp(80.42)*93.79-plog(

↪→ plog(72.73)+88.29)*pdiv(90.82*np.tanh(x[:, 1])-np.tanh(34.71),np.exp

↪→ (50.43))*plog(03.68)*psqrt(np.exp(plog(10.39)*39.89))))

One conclusion from this experiment is that one may get a very good result that will describe

the provided data set and encapsulate all relations present in the data set, but still have it in a very

complicated, hardly explainable form. As literature suggests the reasonable solution is to adjust

fitness function to incorporate the simplicity measure to value simple solutions more, therefor

standard PonyGE2 regression fitness class is not able to optimize search taking simplicity into

consideration. Having said that, there are two reasonable possible solutions:

– Reduce the search space constraints — allow more entities in the population or allow

more generations. That would allow more evolutionary processes to be accomplished,

and therefore the result may be simplified.

– Modify the fitness function to incorporate the simplicity measure. This however is con-

sidered as a challenging problem, as appropriate definition of simplicity in reference to

the solution should be developed. Some sources [2] suggest that length could be such a

measure of simplicity, however that may not always be the case. For example having vari-

able x[:, 0] as in this experiment, according to length simplicity measure, using this

variable is equally simple as introducing psqrt(...) as their lengths are equal, and it

is obvious that introducing a variable decreases simplicity far less than using the square

root. Taking into consideration all these facts, there is no single universal simplicity mea-

sure.

13.7. Conclusion
Presented solutions may further increase the accuracy of solution and achieving feature of

solution explainability. The conclusion from this experiment is that first of all the data set have

to describe all features of the population not only a subset, otherwise not explicitly emphasized

features may not get included in the result. Secondly it appears that even if the result describes

well the data set, it may not be simple enough to satisfy explainability condition, therefor fitness

should take the simplicity into consideration, with respect to correct, according to problem

specification, definition of simplicity.

J. Skrzyński Selected Tools for Grammatical Evolution.

14. Regression over data set with introduced noise
using PonyGE2

This chapter presents an artificial use case of regression over a data set that is derived from

a known function formula with introduced noise. The goal of this experiment is to show if it

would be possible to retrieve the formula resembling the original one.

14.1. Introduction and data set

To perform the experiment, a quadratic function f(x) = 6x2 − 3x + 19 will be used. The

function is fairly simple and without noise should not pose an issue for the algorithm — that

is going to be checked and proved during the test Trial. Each record from the data set is of

shape {x; f(x)}. After test trial, formula will be slightly changed to introduce the disturbance

modeling real life example: f1(s) = 6x2 − 3x+ 19 + random_noise.

14.2. Script used for data set generation and data set details

The program presented below is used to generate the data set and create the random distur-

bance by the creation of noise according to normal distribution. The mean of the distribution is

set to 0 and the standard deviation to 400 to make the disturbance visible on the plot.

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 import matplotlib as mpl

5

6 # Creating np array for x

7 x = np.arange(-100,101,1)

8 # Computing accurate function values

9 y = 6*x*x - 3*x + 19

10

81

82 14.2. Script used for data set generation and data set details

11

12 # Noise specification

13 mean = 0

14 standard_deviation = 400

15

16 # Generation of the noise

17 noise = np.random.normal(mean,standard_deviation, len(x))

18

19 # Introducing the noise

20 realistic_y = y + noise

21

22 WIDTH_SIZE = 10

23 HEIGHT_SIZE = 5

24

25 fig, (ax1, ax2) = plt.subplots(1, 2,figsize=(WIDTH_SIZE,HEIGHT_SIZE)) #

↪→ Create figure for plots and plots.

26 ax1.plot(x, y, ’.’) # Plot accurate data on the axes1.

27 ax2.plot(x, realistic_y, ’.’) # Plot noisy data on the axes2.

28

29 ax1.set_xlabel(’x’)

30 ax1.set_ylabel(’y’)

31 ax1.set_title(’Pure data’)

32

33 ax2.set_xlabel(’x’)

34 ax2.set_ylabel(’y’)

35 ax2.set_title(’Data with noise’)

36

37 plt.show()

38

39 test_Trial = zip(x,y)

40 normal_Trial = zip(x,realistic_y)

41

42 print("### Pure data ###")

43

44 for x,y in test_Trial:

45 print(x,y,sep=’\t’,end=’\n’)

46

47 print("### Data with noise ###")

48

49 for x,y in normal_Trial:

50 print(x,y,sep=’\t’,end=’\n’)

The presented code was inspired by online sources [58], [13], [14].

J. Skrzyński Selected Tools for Grammatical Evolution.

14.3. Test trial 83

Figure 14.1. Plot presenting the data set generated using function f(x) =

6x2−3x+19 with introduced noise generated according to normal distribution.

14.3. Test trial

After performing the test trial of the experiment, it went out that the evolved formula was

close enough to the desired formula. Evolution took 30 seconds. It was performed using param-

eters specified below.

1 CACHE: True

2 CODON_SIZE: 100000

3 CROSSOVER: variable_onepoint

4 CROSSOVER_PROBABILITY: 0.75

5 DATASET_TRAIN: regr_noise_pure/Train.txt

6 DATASET_TEST: regr_noise_pure/Test.txt

7 DEBUG: False

8 ERROR_METRIC: mse

9 GENERATIONS: 50

10 MAX_GENOME_LENGTH: 500

11 GRAMMAR_FILE: supervised_learning/regression-noise.bnf

12 INITIALISATION: PI_grow

13 INVALID_SELECTION: False

14 MAX_INIT_TREE_DEPTH: 10

15 MAX_TREE_DEPTH: 17

16 MUTATION: int_flip_per_codon

17 POPULATION_SIZE: 500

18 FITNESS_FUNCTION: supervised_learning.regression

19 REPLACEMENT: generational

20 SELECTION: tournament

J. Skrzyński Selected Tools for Grammatical Evolution.

84 14.4. Test on data with noise

21 TOURNAMENT_SIZE: 2

22 VERBOSE: False

23

24

The result of the Trial is presented below in a form of phenotype generated by PonyGE2.

1 x[:, 0]*psqrt(36.03)*x[:, 0]

According to agreed convention, the result can be interpreted as x ∗
√
36.03 ∗ x that could

be simplified to x2 ∗
√
36.03. Comparison with desired formula f(x) = 6x2−3x+19 had been

prepared using WolframAlpha tool and presented on figure 14.2. Taking into consideration the

limitations on search, the result is very good and satisfying. It proves the concept.

14.4. Test on data with noise

Having completed the test trial, proving that GE is capable of retrieving the formula in a data

set that does not contain disturbances, the data set with artificial noise is going to be explored.

To perform this test, the same parameters were used, the only difference was in values of the

second column in the data set.

The raw result of the test is presented below. Total time consumed by evolution is 40 sec-

onds.

1 psqrt(x[:, 0])+x[:, 0]*x[:, 0]*psqrt(81.56*np.sin(psqrt(45.29))+np.

2 sin(np.sin(psqrt(45.29))+np.tanh(pdiv(psqrt(x[:, 0]),np.exp(x[:, 0])))))+

↪→ plog(ps

3 qrt(65.78)+plog(x[:, 0])-x[:, 0])

To enhance readability this could be further transformed into the following form, that can be

passed to wolframalpha.com to achieve a simpler equivalent formula that is easier to compare

with original function

1 sqrt(x)+x*x*sqrt(81.56*sin(sqrt(45.29))+sin(sin(sqrt(45.29))+tanh((sqrt(x)/

↪→ exp(x)))))+log(sqrt(65.78)+log(x)-x)

The simplified result returned by WolframAlpha is presented below. It appears that for

longer evolutionary process it would tend to transform into quadratic formula, but in this par-

ticular case the result is over-complicated, and it is not possible to observe obvious similarities

to the original formula f(x) = 6x2 − 3x+ 19.

x2

√
sin tanh e−x

√
x+ 0.431901 + 35.2258 +

√
x+ log−x+ log x+ 8.11049

J. Skrzyński Selected Tools for Grammatical Evolution.

14.4. Test on data with noise 85

Figure 14.2. Comparison of the desired function f(x) = 6x2 − 3x + 19

and the one evolved during the test trial, ft(x) = x2 ∗
√
36.03 prepared us-

ing https://www.wolframalpha.com/. Detailed chart can be obtained by use of

link https://www.wolframalpha.com/input?i=x*sqrt%2836.

03%29*x+vs+6x2%E2%88%923x%2B19. Blue line in the second pair of

chart is almost fully covered by orange, desired, function.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://www.wolframalpha.com/input?i=x*sqrt%2836.03%29*x+vs+6x2%E2%88%923x%2B19
https://www.wolframalpha.com/input?i=x*sqrt%2836.03%29*x+vs+6x2%E2%88%923x%2B19

86 14.4. Test on data with noise

Comparison of the desired formula and the achieved one is presented in figure 14.3. It is

surprising how close evolved formulas real part is to the original ones for x ≥ 0. Judging by

this fact, the Trial could be described as a partially succeed, however the result does still lack

explainability — the formula is over-complicated and hard to work with.

Figure 14.3. Comparison of the desired function f(x) =

6x2 − 3x + 19 and the one evolved during the real Trial

ft(x) = x2
√

sin tanh e−x
√
x+ 0.431901 + 35.2258 +

√
x +

log−x+ log x+ 8.11049 prepared using https://www.wolframalpha.com/

Closer examination of the figure 14.3 is possible via a following link https:

//www.wolframalpha.com/input?i=sqrt%28x%29%2Bx*x*sqrt%2881.

56*sin%28sqrt%2845.29%29%29%2Bsin%28sin%28sqrt%2845.29%29%29%

2Btanh%28%28sqrt%28x%29%2Fexp%28x%29%29%29%29%29%2Blog%28sqrt%

2865.78%29%2Blog%28x%29-x%29.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://www.wolframalpha.com/input?i=sqrt%28x%29%2Bx*x*sqrt%2881.56*sin%28sqrt%2845.29%29%29%2Bsin%28sin%28sqrt%2845.29%29%29%2Btanh%28%28sqrt%28x%29%2Fexp%28x%29%29%29%29%29%2Blog%28sqrt%2865.78%29%2Blog%28x%29-x%29
https://www.wolframalpha.com/input?i=sqrt%28x%29%2Bx*x*sqrt%2881.56*sin%28sqrt%2845.29%29%29%2Bsin%28sin%28sqrt%2845.29%29%29%2Btanh%28%28sqrt%28x%29%2Fexp%28x%29%29%29%29%29%2Blog%28sqrt%2865.78%29%2Blog%28x%29-x%29
https://www.wolframalpha.com/input?i=sqrt%28x%29%2Bx*x*sqrt%2881.56*sin%28sqrt%2845.29%29%29%2Bsin%28sin%28sqrt%2845.29%29%29%2Btanh%28%28sqrt%28x%29%2Fexp%28x%29%29%29%29%29%2Blog%28sqrt%2865.78%29%2Blog%28x%29-x%29
https://www.wolframalpha.com/input?i=sqrt%28x%29%2Bx*x*sqrt%2881.56*sin%28sqrt%2845.29%29%29%2Bsin%28sin%28sqrt%2845.29%29%29%2Btanh%28%28sqrt%28x%29%2Fexp%28x%29%29%29%29%29%2Blog%28sqrt%2865.78%29%2Blog%28x%29-x%29
https://www.wolframalpha.com/input?i=sqrt%28x%29%2Bx*x*sqrt%2881.56*sin%28sqrt%2845.29%29%29%2Bsin%28sin%28sqrt%2845.29%29%29%2Btanh%28%28sqrt%28x%29%2Fexp%28x%29%29%29%29%29%2Blog%28sqrt%2865.78%29%2Blog%28x%29-x%29

14.5. Conclusions 87

14.5. Conclusions

The presented experiment has showed that it is hard to eliminate the impact of presence of

noise in the input data therefor to achieve best results, data set should be prepared carefully with

special attention to preciseness of data, however it is still possible to further enhance the result

by introducing assumptions like definition of simplicity and connecting its value to fitness,

or limiting number of allowed derivations. These approaches are possible but requires either

additional knowledge or many experiments to determine if the assumption is feasible.

J. Skrzyński Selected Tools for Grammatical Evolution.

88 14.5. Conclusions

J. Skrzyński Selected Tools for Grammatical Evolution.

15. Evolving formula for function composed of at
least one periodic function using PonyGE2

The goal of this task is to check how well does GE approach work with periodic functions

incorporated in the data set. To perform the test, two data sets will be used, one with pure data

and the second with noise. Then results are going to be compared and discussed.

15.1. Data set

The function that is going to generate the data set is going to be f(x) = sin (0.1 ∗ x) ∗ 20 +
x− 10. It does contain the periodic function that is going to introduce some periodic behavior,

but it is also accompanied by a simple linear formula to further test abilities of GE. Comparison

of pure and noisy data is presented in the figure 15.1.

15.2. Trial with pure data

To perform the experiment, parameters presented below were used. Due to the complexity

of the problem, more generations were allowed in order to evolve simpler and better in terms

of fitness formula. Despite efforts, the solution that came out was very complicated and hardly

explainable. To ensure that the outcome is simple enough, the size of derivation tree was reduced

significantly, disallowing huge formulas to be generated by marking them as illegal.

1 CACHE: True

2 CODON_SIZE: 100000

3 CROSSOVER: variable_onepoint

4 CROSSOVER_PROBABILITY: 0.75

5 DATASET_TRAIN: pfunc/pure/Train.txt

6 DATASET_TEST: pfunc/pure/Test.txt

7 DEBUG: False

8 ERROR_METRIC: mse

9 GENERATIONS: 200

89

90 15.2. Trial with pure data

Figure 15.1. Visualization of pure data set generated by function f(x) =

sin (0.1 ∗ x) ∗ 20+ x− 10 and fn(x) = sin (0.1 ∗ x) ∗ 20+ x− 10+ noise

that contains noise generated according to normal distribution with following

parameters: mean µ = 0 and standard deviation σ = 10

10 MAX_GENOME_LENGTH: 500

11 GRAMMAR_FILE: supervised_learning/regression-noise.bnf

12 INITIALISATION: PI_grow

13 INVALID_SELECTION: False

14 MAX_INIT_TREE_DEPTH: 10

15 MAX_TREE_DEPTH: 6

16 MUTATION: int_flip_per_codon

17 POPULATION_SIZE: 500

18 FITNESS_FUNCTION: supervised_learning.regression

19 REPLACEMENT: generational

20 SELECTION: tournament

21 TOURNAMENT_SIZE: 2

22 VERBOSE: False

Without limiting the size of output, it was possible to achieve the result presented below.

At first, it looks promising as it contains the desired trigonometry function and is fairly simple,

however comparison to the original function shows a lot of differences. A simplified generated

formula is presented below.

x− 0.159394(−x sin 4.37551−
√
x− sinx+ x(− log (−0.0423908x)) + 12.05 + 65.15)

After limiting the size of the derivation tree as stated in the parameters above, another at-

tempt was performed, producing the result presented below.

J. Skrzyński Selected Tools for Grammatical Evolution.

15.3. Test with noise 91

x−
√
83.50− x

Plots in figure 15.2 show clearly that the trial did succeed to some extent, as the created plot

of the real part is close enough to the desired formula to call it approximation. It becomes even

clearer when comparing the result to the non-periodic part of function - x− 10. Visualization is

presented in figure 15.3.

To tackle the issue of close to linear approximation, search parameters were adjusted as

described below, allowing broader search.

– GENERATIONS: 300

– MAX_TREE_DEPTH: 8

– POPULATION_SIZE: 600

Despite those changes, search seems to be stuck around the quasi linear approximation.

Interpretation of the trial’s result is presented below.

x−
√

x− 29.99
44.52
x+x

− 86.83− 84.19

It is worth to mention that interpretation above is simplified as the output of the program

contains predefined safe functions that for example have predefined value for zero division.

15.2.1. Conclusion on the test

It appears that shape introduced by sin function had been treated as impurity in data that

should be removed. There are a couple of potential solutions:

– Increase number of generations, allowing more evolutionary processes to happen.

– Increase size of population to achieve higher diversity among population.

– Adjust the fitness function to value simple individuals more.

15.3. Test with noise

In this trial, noisy data is going to be passed to PonyGE2 configured according to parameters

file specified below.

J. Skrzyński Selected Tools for Grammatical Evolution.

92 15.3. Test with noise

Figure 15.2. Comparison between result generated by GE x −
√
83.50− x

and the desired function sin (0.1 ∗ x) ∗ 20 + x − 10 prepared using

wolframalpha.com. Closer inspection of figure is possible via a link

https://www.wolframalpha.com/input?i=x-sqrt%2883.

50-x%29+vs+sin%280.1*x%29+*+20+%2B+x+-+10. In the second

pair of charts, blue line is almost covered by sine shape of the desired function.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://www.wolframalpha.com/input?i=x-sqrt%2883.50-x%29+vs+sin%280.1*x%29+*+20+%2B+x+-+10
https://www.wolframalpha.com/input?i=x-sqrt%2883.50-x%29+vs+sin%280.1*x%29+*+20+%2B+x+-+10

15.3. Test with noise 93

Figure 15.3. Comparison between result generated by GE x−
√
83.50− x and

part of the desired function x−10 prepared using wolframalpha.com. The plot

can be viewed using a following URL https://www.wolframalpha.

com/input?i=x-sqrt%2883.50-x%29+vs++x+-+10.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://www.wolframalpha.com/input?i=x-sqrt%2883.50-x%29+vs++x+-+10
https://www.wolframalpha.com/input?i=x-sqrt%2883.50-x%29+vs++x+-+10

94 15.4. Test with noisy data and reduced constraints

1 CACHE: True

2 CODON_SIZE: 100000

3 CROSSOVER: variable_onepoint

4 CROSSOVER_PROBABILITY: 0.75

5 DATASET_TRAIN: pfunc/noise/Train.txt

6 DATASET_TEST: pfunc/noise/Test.txt

7 DEBUG: False

8 ERROR_METRIC: mse

9 GENERATIONS: 300

10 MAX_GENOME_LENGTH: 500

11 GRAMMAR_FILE: supervised_learning/regression-noise.bnf

12 INITIALISATION: PI_grow

13 INVALID_SELECTION: False

14 MAX_INIT_TREE_DEPTH: 10

15 MAX_TREE_DEPTH: 8

16 MUTATION: int_flip_per_codon

17 POPULATION_SIZE: 600

18 FITNESS_FUNCTION: supervised_learning.regression

19 REPLACEMENT: generational

20 SELECTION: tournament

21 TOURNAMENT_SIZE: 2

22 VERBOSE: False

The returned result is also tending to be close to linear approximation of the function. The

result is presented below accompanied by visual interpretation in figure 15.4

1 x-np.exp(np.tanh(10.00))*plog(80.49-x)

15.3.1. Conclusion on the step of the experiment

According to presented data, the model tends to oversimplify the function, loosing precision.

However, that could be explained by strict limitations on search space, leaving huge room for

improvements. Despite the emerged issue, the trial could be said to be partially success, as the

output provides approximation of the desired function.

15.4. Test with noisy data and reduced constraints

To check if results could be easily improved by reducing constraints on population size and

generations, an additional trial was conducted, having the number of generations set to 500.

Execution took 110 seconds and returned output similar to the one from the previous trial.

The result is presented below along with visualization in figure 15.5.

J. Skrzyński Selected Tools for Grammatical Evolution.

15.4. Test with noisy data and reduced constraints 95

Figure 15.4. Comparison between result generated by GE as a result of trial

with data containing noise, described in section 15.3 and the desired function

prepared using script described in chapter 20

1 x-psqrt(87.49-x)*plog(pdiv(x-99.98,x-47.48))

It appears that this time shape is starting to adjust to the desired curve. Around x = 4

there is a visible spike that tends to the desired shape. Presence of this spike shows that reduc-

ing the constraints could possibly lead to better approximation, proving the hypothesis stated

previously.

After changing parameters to allowing 1000 generations with population size 1000 the result

started to contain a sin function making it even closer to the desired formula, taking 810 seconds

to compute. The result is presented below and visualized in figure 15.6.

1 x-np.sin(pdiv(19.56+45.02,x))-10.54+np.sin(np.tanh(x))*psqrt(30.47)

Allowing 3000 generations made possible to achieve a shape even more resembling the

desired one, taking 2435 seconds to compute. The result is presented below and in figure 15.7

1 x-np.sin(pdiv(66.00,x))-psqrt(79.94-pdiv(99.99,np.tanh(x))+41.63*np.sin(

↪→ plog(x)))

15.4.1. Conclusion on the step of the experiment

Allowing more evolutionary processes to occur enhances the result, as showed in the trial

above. Based on gained knowledge, it is safe to say that increasing mentioned parameters gives

the desired outcome and is worth extra computational time.

J. Skrzyński Selected Tools for Grammatical Evolution.

96 15.4. Test with noisy data and reduced constraints

Figure 15.5. Comparison between result generated by GE as a result of trial

with data containing noise and reduced evolutionary constraints, described in

section 15.4 and the desired function prepared using script described in chapter

20

Figure 15.6. Comparison between result generated by GE as a result of trial

with data containing noise and even more reduced evolutionary constraints to

number of generations equal 1000 having populations of size 1000, described

in section 15.4 and the desired function prepared using script described in

chapter 20

J. Skrzyński Selected Tools for Grammatical Evolution.

15.5. Conclusion 97

Figure 15.7. Comparison between result generated by GE as a result of trial

with data containing noise and even more reduced evolutionary constraints to

number of generations equal 3000 having populations of size 1000, described

in section 15.4 and the desired function prepared using script described in

chapter 20

15.5. Conclusion

The presented experiment showed that evolving periodic function can pose issue as in pro-

cess of evolution it may get approximated by a function close to linear, taking values similarly

to ones got in process of linear regression. Additionally, it was presented that introducing noise

does not have significant impact on the shape of output. As a last remark, one may point out

that increasing evolutionary search parameters allows getting values closer to desired function,

proving that search is not getting stuck.

J. Skrzyński Selected Tools for Grammatical Evolution.

98 15.5. Conclusion

J. Skrzyński Selected Tools for Grammatical Evolution.

16. Evolving a valid Python program to compute the
sum of elements in a delivered array

16.1. Introduction

The goal of this problem is to evolve a Python program that will be able to compute the sum

of elements contained in an array of constant, predefined, lengths. It may be assumed that the

elements of the array are integer numbers. To accomplish this task, PonyGE2 will be used.

The first attempt of this experiment was prepared with the use of the PyNeurGen library,

however taking into consideration its limitations and constantly emerging issues with correct

processing of grammar describing more complex solutions and issues caused by encapsulating

fitness calculation function into the evolved individual it was decided to switch to PonyGE2.

16.2. Method of individual validation and calculating fitness

value

16.2.1. Evaluation

To avoid overfitting, a single individual is going to be evaluated on three different randomly

generated arrays of integer numbers. Evaluation based only on a single array may promote code

that accidentally provided a constant that was close enough to the desired value.

16.2.2. Calculating fitness

As described in the section above, every individual is going to compute sums of three dif-

ferent arrays. Then fitness is the sum of absolute values of differences between returned and

desired values. The formula below expresses that idea:

99

100 16.3. Used grammar

fitness =
n∑

i=0

(desired_value[i]− returned_value[i])

16.3. Used grammar

As a simplification, the following code snippet will be provided to guide the search in the

right direction.

1 def sum_of_array(input):

2 result = 0

3 <code>

4 return result

5 XXX_result = sum_of_array(input)

To calculate fitness according to the convention of PonyGE2, another fitness function should

be developed in the form of a class derived from base_ff. The following piece of code

presents the algorithm according to which fitness gets calculated, which is going to be used

inside the fitness class.

1 import random

2

3 def right_answer(input):

4 sum_of_elements = 0

5 for element in input:

6 sum_of_elements+=element

7 return sum_of_elements

8

9 def calculate_fitness():

10 fit = 0

11 for _ in range(3):

12 input = [random.randint(0,100) for _ in range(10)]

13 fit+=abs(sum_of_array(input)-right_answer(input))

14 return fit

15

16 fitness = calculate_fitness()

Having defined the starting point, it is time to create a BNF description of the language. Real

Python grammar[27] seems to be too complex for such an example. Using the entire definition

would overcomplicate the execution and consume a lot more resources than is necessary to test

the performance of the tool and prove the concept, therefor grammar being a subset of original

rules will be used.

J. Skrzyński Selected Tools for Grammatical Evolution.

16.3. Used grammar 101

The first attempt of this experiment was to be performed using PyNeurGen there-

fore it was planned to use a tool that creates correct indentation, available via

URL https://svn.python.org/projects/python/trunk/Tools/scripts/

pindent.py. However, during the execution there have emerged so many issues that it was

decided to change the tool.

The used grammar is based on the one available in the GitHub repository entitled NC-GA

served under a URL address https://github.com/Padam-0/NC-GA/tree/master

that is supplementary material to the article https://towardsdatascience.com/

introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a.

Grammar does describe simple python programs but is fine-tuned for the case described in the

article, therefore it requires modifications to be used in this experiment. A ready version of the

grammar is presented below:

1 <fc> ::= <deff>{::}<callf>

2 <deff> ::= def sum_of_array(input):{:result = 0{::}<code>{::}return result

↪→ :}

3

4 <callf> ::= XXX_result = sum_of_array(input)

5

6 <code> ::= <stmt> | <stmt>{::}<code>

7

8 <stmt> ::= <var> = <expr> | <for> | <if> | <list-op>

9

10 <for> ::= for i in <list-var>:{:<fl-code>:}

11 <fl-code> ::= <fl-stmt> | <fl-stmt>{::}<fl-code>

12 <fl-stmt> ::= <var> = <expr> | <fl-if>

13 <fl-if> ::= if <cond>:<fl-if-opt>

14 <fl-if-opt> ::= {:<fl-code>:} | {:<fl-code>:}else:{:<fl-code>:} | {:<fl-

↪→ code>:}elif <cond>:{:<fl-if-opt>:}

15

16 <var> ::= result | i

17 <list-var> ::= input

18

19 <number> ::= <num><num><num> | <num><num> | <num>

20 <num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

21

22 <op> ::= + | - | * | / | //

23

24 <if> ::= if <cond>:<if-opt>

25 <if-opt> ::= {:<code>:} | {:<code>:}else:{:<code>:} | {:<code>:}elif <cond

↪→ >:<if-opt>

J. Skrzyński Selected Tools for Grammatical Evolution.

https://svn.python.org/projects/python/trunk/Tools/scripts/pindent.py
https://svn.python.org/projects/python/trunk/Tools/scripts/pindent.py
https://github.com/Padam-0/NC-GA/tree/master
https://towardsdatascience.com/introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a
https://towardsdatascience.com/introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a

102 16.4. Implementation of the fitness class

26

27 <cond> ::= <expr> <c-op> <expr> | <expr> <c-op> <expr> and <cond> | <expr>

↪→ <c-op> <expr> or <cond>

28 <c-op> ::= "==" | "!=" | ">=" | "<=" | ">" | "<"

29

30 <expr> ::= <number> | <var> | <expr> <op> <expr> | len(<list-var>) | <list-

↪→ var>[<neg><number>]

31

32 <list-op> ::= <list-var>.append(<expr>)

33 <neg> ::= "" | -

Having this grammar, it is worth reminding that PonyGE2 does provide functionality for

handling the correct indentation. To take advantage of this function, the sequence {: and :}

is used. Strings enclosed in these “brackets” undergo an indent by one level. Additionally, the

sequence {::} is a symbol of a new line.

16.4. Implementation of the fitness class

The implementation of the fitness class does contain the mentioned previously algorithm.

The main function of the additional code present in the class is to retrieve the phenotype and then

pass it to the defined algorithm. To call the evolved function program uses exec() a function

surrounded by try block as the evolved program in some cases may cause runtime errors to be

raised. If this happens, the program should eliminate this solution as it cannot be executed.

The complete code of the fitness class is presented below. Implementation is inspired by ex-

ample of fitness class delivered in a package, located in file /src/fitness/pymax.py

and the one described by mentioned article https://towardsdatascience.com/

introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a.

1 from fitness.base_ff_classes.base_ff import base_ff

2 import random

3

4 class sum_of_array(base_ff):

5

6 maximise = False

7

8 def __init__(self):

9 super().__init__()

10

11 def evaluate(self, ind, **kwargs):

12

13 p = ind.phenotype

J. Skrzyński Selected Tools for Grammatical Evolution.

https://towardsdatascience.com/introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a
https://towardsdatascience.com/introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a

16.5. Parameters 103

14

15 def right_answer(input):

16 sum_of_elements = 0

17 for element in input:

18 sum_of_elements+=element

19 return sum_of_elements

20

21 def call_sum_of_array(input,p):

22 d = {’input’: input}

23 try:

24 exec(p, d)

25 s = d[’XXX_result’]

26 return s

27 except:

28 return None

29

30 def calculate_fitness(p):

31 fit = 0

32 for _ in range(3):

33 input = [random.randint(0,100) for _ in range(10)]

34 result = call_sum_of_array(input,p)

35 if result is None:

36 return self.default_fitness

37

38 fit+=abs(float(result)-right_answer(input))

39 return fit

40

41 return calculate_fitness(p)

16.5. Parameters

During the execution of the experiment, the following parameters were used in the form of

a parameters file.

1 CACHE: True

2 CODON_SIZE: 100000

3 CROSSOVER: variable_onepoint

4 CROSSOVER_PROBABILITY: 0.75

5 DEBUG: False

6 GENERATIONS: 400

7 MAX_GENOME_LENGTH: 500

8 GRAMMAR_FILE: sum_of_array.pybnf

J. Skrzyński Selected Tools for Grammatical Evolution.

104 16.6. Results

9 INITIALISATION: PI_grow

10 INVALID_SELECTION: False

11 MAX_INIT_TREE_DEPTH: 10

12 MAX_TREE_DEPTH: 17

13 MUTATION: int_flip_per_codon

14 POPULATION_SIZE: 500

15 FITNESS_FUNCTION: sum_of_array

16 REPLACEMENT: generational

17 SELECTION: tournament

18 TOURNAMENT_SIZE: 2

19 VERBOSE: False

16.6. Results

Despite the simplicity, the model was able to quickly accomplish the given goal. The final

result is presented in the listing below.

1 def sum_of_array(input):

2 result = 0

3 for i in input:

4 result = result + i

5 return result

6 XXX_result = sum_of_array(input)

Evolution took only 95 seconds, reaching exactly the desired program, achieving a perfect

fitness value equal to 0. Moreover, careful inspection of the plot of the best fitness values in the

given generation, presented in figure 16.1 shows that the desired value of fitness required only

about 30 generations to be reached.

16.7. Conclusions

The presented example emphasizes the advantages of PoyGE2 in terms of evolving syntac-

tically correct Python code. It does have its own mechanism for handling correct white spaces,

reducing the need to handle indentation in experiment code.

The tool also showed very good performance concerning the time of computations. Addi-

tionally, providing all parameters and algorithms was done in a very convenient way, shortening

the preparation time.

J. Skrzyński Selected Tools for Grammatical Evolution.

16.7. Conclusions 105

Figure 16.1. Plot presenting the best value of fitness achieved in a given gen-

eration. Plot was prepared automatically by PonyGE2

J. Skrzyński Selected Tools for Grammatical Evolution.

106 16.7. Conclusions

J. Skrzyński Selected Tools for Grammatical Evolution.

17. Simple regression on the dataset generated by a
polynomial of 4th order using PyNeurGen

17.1. Introduction

This example is provided to show the possibilities offered by the PyNeurGen library. The

task is to perform evolution having grammar describing mathematical expressions and a data

set generated by a 4th order polynomial.

17.2. Data generation

To generate data, the polynomial presented below will be used. The selected formula makes

it easier to visualize the shape of the function around interesting, non-trivial, points.

f(x) = 0.00001(x+ 80)(x+ 40)(x− 25)(x− 80)

This formula could be further transformed into the following one.

0.00001 ∗ (x4 + 15x3 − 7400x2 − 96000x+ 6400000)

As PyNeurGen requires having fitness calculation encapsulated into the starting point code,

the data generation script requires simple adjustments that will allow the script to partially gen-

erate the code. According to the method for calculating the value of fitness, described in section

17.3, the script should then prepare a ready-to-use array that contains values of parameter x and

the desired function values. The code of the modified version is presented below.

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 import matplotlib as mpl

5

6 # Creating np array for x

107

108 17.3. Fitness calculation

7 x = np.arange(-100,101,2)

8 # Computing value of the formula returned by the program

9 y = 0.00001*(x+80)*(x+40)*(x-25)*(x-80)

10

11

12 WIDTH_SIZE = 10

13 HEIGHT_SIZE = 5

14

15 fig, (ax1) = plt.subplots(1, 1,figsize=(WIDTH_SIZE,HEIGHT_SIZE))

16 ax1.plot(x, y, ’.’) # Plot generated data on the axes1.

17

18 ax1.set_xlabel(’x’)

19 ax1.set_ylabel(’y’)

20 ax1.set_title(’Dataset visualization’)

21

22 temp = zip(x,y)

23 ds = []

24

25 for el in temp:

26 ds.append([el[0],el[1]])

27

28 print(ds)

29

30 plt.show()

Code was inspired by online sources [13] [14].

17.2.1. Data set

Figure 17.1 shows a visualization of the data prepared for this trial. The dataset does contain

a reduced number of points to test the capabilities of the tool to work with a limited amount of

data.

17.3. Fitness calculation

To calculate fitness in PyNeurGen, the user is required to provide the exact code that is

going to be executed. To do so, the following approach is going to be adopted. For each element

of the dataset, let error e be the square of the difference between desired and achieved value.

e = (desired_value− achieved_value)2

J. Skrzyński Selected Tools for Grammatical Evolution.

17.3. Fitness calculation 109

Figure 17.1. Visualization of the data set generated by polynomial 0.00001 ∗
(x4 + 15x3 − 7400x2 − 96000x+ 6400000) prepared using tool described in

section 17.2

Then, let the fitness be the sum of errors e of all records in the dataset. The formula is

presented below.

fitness =
len(dataset)∑

i=0

ei

fitness =
len(dataset)∑

i=0

(desired_valuei − achieved_valuei)
2

The presented approach can be then represented as a simple loop in code. Below, the im-

plementation is presented. The data set variable is indexed by the number of record and by the

column. The first column does contain x value and the second column provides the desired

function output

1

2 def generated_fuction(x):

3 # ...

4 pass

5

6 fitness = 0

7

8 # dataset[record][col]

9

10 for record in dataset:

11 difference = generated_fuction(record[0])-record[1]

J. Skrzyński Selected Tools for Grammatical Evolution.

110 17.4. BNF grammar

12 fitness+= difference*difference

Having that code, according to the conventions established by PyNeurGen, it is required to

set the correct variable to transfer the fitness value into the library. The code presented below

had been modified to perform all the mentioned necessary steps.

1

2 def generated_fuction(x):

3 # ...

4 pass

5

6 fitness = 0

7

8 # dataset[record][col]

9

10 for record in dataset:

11 difference = generated_fuction(record[0])-record[1]

12 fitness+= difference*difference

13 self.set_bnf_variable(’<fitness>’, fitness)

Having such a definition of fitness, it is required also to say that the optimization goal is to

minimize its value. The ideal point is exactly at 0.

17.4. BNF grammar

In this case, a grammar developed by a library author for one of the examples, located in

file sample_grammatical_evolution.py, is sufficient, therefore it is going to be used.

with a modified starting point based on the previously mentioned fitness calculating code and

slightly changed productions. The used version is presented below.

1 <expr> ::= <expr> <biop> <expr> | <uop> <expr> | <real> |

2 math.log(abs(<expr>)) | <pow> | math.sin(<expr>)

3 <biop> ::= + | - | * | /

4 <uop> ::= + | -

5 <pow> ::= pow(<expr>, <real>)

6 <plus> ::= +

7 <minus> ::= -

8 <real> ::= <int-const>.<int-const>

9 <int-const> ::= <int-const> | 1 | 2 | 3 | 4 | 5 | 6 |

10 7 | 8 | 9 | 0

11 <S> ::=

12 def generated_fuction(x):

13 <expr>

J. Skrzyński Selected Tools for Grammatical Evolution.

17.5. Complete program 111

14 pass

15 fitness = 0

16 for record in dataset:

17 difference = generated_fuction(record[0])-record[1]

18 fitness+= difference*difference

19 self.set_bnf_variable(’<fitness>’, fitness)

17.5. Complete program

As it was described in chapter 7, PyNeurGen is just a library that needs a main program to

run, therefor to perform this experiment one has to be written. The program does contain all the

settings of the evolutionary process.

While adjusting the limitations, one has to be especially careful in setting the program length

limit. It is important to take into consideration the length of the starting point and include it in the

limit. If the specified limit is lower than the length of the starting point, the library will evaluate

non fully terminated string resulting in fault and assigning fitness equal to fault penalty.

Additionally, during experiments, it was proven that PyNeurGen is not very stable, and

allowing a higher number of generations may cause errors and unpredictable behavior.

The code used to perform this experiment is presented below. The implementation

is inspired by example delivered with PyNeurGen in file pyneurgen/demo/sample_

grammatical_evolution.py.

1 from pyneurgen.grammatical_evolution import GrammaticalEvolution

2 from pyneurgen.fitness import FitnessElites, FitnessTournament

3 from pyneurgen.fitness import ReplacementTournament

4

5 bnf="""

6 <expr> ::= <expr> <biop> <expr> | <uop> <expr> | <real> |

7 math.log(abs(<expr>)) | <pow> | math.sin(<expr>) |

↪→ x

8 <biop> ::= + | - | * | /

9 <uop> ::= + | -

10 <pow> ::= pow(<expr>, <real>)

11 <plus> ::= +

12 <minus> ::= -

13 <real> ::= <int-const>.<int-const>

14 <int-const> ::= <int-const> | 1 | 2 | 3 | 4 | 5 | 6 |

15 7 | 8 | 9 | 0

16 <S> ::=

17 import math

J. Skrzyński Selected Tools for Grammatical Evolution.

112 17.5. Complete program

18 def generated_fuction(x):

19 return <expr>

20 pass

21 fitness = 0

22 dataset = [] # here goes gnerated dataset

23 for record in dataset:

24 difference = generated_fuction(record[0])-record[1]

25 fitness+= difference*difference

26 self.set_bnf_variable(’<fitness>’, fitness)

27

28 """

29

30 ges = GrammaticalEvolution()

31

32 ges.set_bnf(bnf)

33 ges.set_genotype_length(start_gene_length=20,

34 max_gene_length=50)

35 ges.set_population_size(30)

36 ges.set_wrap(True)

37

38 ges.set_completion_criteria("g", 60)

39 ges.set_completion_criteria("f", "center", 0.01)

40

41 #ges.set_fitness_type(’min’, .01)

42

43 ges.set_max_program_length(3500)

44 ges.set_timeouts(10, 120)

45 ges.set_fitness_fail(10000000000.0)

46

47 ges.set_mutation_rate(.025)

48 ges.set_fitness_selections(

49 FitnessElites(ges.fitness_list, .05),

50 FitnessTournament(ges.fitness_list, tournament_size=2))

51 ges.set_max_fitness_rate(.5)

52

53 ges.set_crossover_rate(.2)

54 ges.set_children_per_crossover(2)

55 ges.set_mutation_type(’m’)

56 ges.set_max_fitness_rate(.25)

57

58 ges.set_replacement_selections(

59 ReplacementTournament(ges.fitness_list, tournament_size=3))

60

J. Skrzyński Selected Tools for Grammatical Evolution.

17.6. Results 113

61 ges.set_queue_size(0)

62 ges.set_garbage_collection(5)

63 ges.set_maintain_history(True)

64 ges.create_genotypes()

65 print ges.run()

66 print ges.fitness_list.sorted()

67 print

68 print

69 gene = ges.population[ges.fitness_list.best_member()]

70 print gene.get_program()

17.6. Results

Unfortunately, due to tool limitations in terms of efficiency and stability, it was possible

only to achieve the following result.

1 def generated_fuction(x):

2 return 9.9

3 pass

It is not the right solution and cannot be considered a success. It emphasizes the issues of

the tool, showing that it may not be the right choice for large projects.

17.7. Remarks on used tool

During testing the tool, it went out that it is the most convenient to use with so-called one-

liners, as the tool does not perform very well in terms of generating whole functions due to the

way the grammar parsing and fitness calculation are performed.

Despite having getting started tutorials, it is very difficult to quickly get the program work-

ing. The tutorial on GE presents just a simple case and does not provide extensive and exhaustive

explanations of some functionalities, forcing users to reverse engineer the code.

J. Skrzyński Selected Tools for Grammatical Evolution.

114 17.7. Remarks on used tool

J. Skrzyński Selected Tools for Grammatical Evolution.

18. Results, summary, and conclusion

18.1. Results of tools comparison

18.1.1. General conclusion on comparison

Having presented a few of the available tools and the usual criteria stated by software de-

velopers, it is not possible to point to one winner of the comparison. Presented tools do differ

significantly in terms of delivered features and used technology. Additionally, they come with

different advantages and disadvantages whose weights may differ among users. As an example

of such features, the time efficiency and learning curve can be presented.

Available literature shows some mature tools that are still maintained and that are usable in

current projects, as well as interesting but abandoned tools. There was also presented a single

example of a currently rising tool with great potential to succeed, depending on the maintenance

and further development.

18.1.2. Final recommendation on tools

As it was stated in the previous section it is impossible to select, a single, best tool, how-

ever, after careful analysis of the presented developers’ needs, available data on developers’

preferences, and features of tools it is possible to state some recommendations.

Two packages that are definitely worth of attention are PonyGE2 and gramEvol. Both tools

are equipped with comprehensive documentation and supplementary resources covering poten-

tial use cases. Both are mature and still maintained. Moreover, both tools gathered a community

of users who use it for real cases.

Special attention could be also paid to GRAPE, which could be a significant competitor of

PonyGE2 in the near future, assuming it will be still maintained and improved.

115

116 18.2. Conclusions on performed experiments and prepared models

18.2. Conclusions on performed experiments and prepared

models

18.2.1. Final conclusions

Performed experiments show just a few of many potential use cases but emphasize the ad-

vantages of Grammatical Evolution and available tools. Experiments also show potential issues

that may emerge during the development of the GE model.

Grammars and their correct definitions are very good tools to introduce additional knowl-

edge into the system. Careful design may limit the search space in accordance with already

possessed knowledge about the system. One of the grammars presented in the example from

gramEvol documentation does introduce more knowledge than grammars used in other exam-

ples, showing this ability to encapsulate expert knowledge into the model.

Designing a correct model requires deep knowledge of the utility of the solution. It allows

the user to create a correct fitness function that is being used to rate evolved solutions, therefore

allowing the selection of the correct results.

Special attention should be paid also to the limitations of a derivation process — they differ

among tools. Some do introduce the concept of limiting the depth of a derivation tree, whereas

others use just the length of the final phenotype as a limitation.

As a final conclusion, one may say that building GE models does allow injecting knowledge

into the system and has the efficiency of retrieving good solutions proportional to the amount

of introduced knowledge. GE does not require a lot of theory knowledge from the final users,

enabling them to adopt the technique relatively quickly.

18.3. Conclusion on GE potential applications

Previous chapters do present lots of potential applications of GE. Examining the sources

clearly shows that it may be used with a very wide variety of problems.

Currently, it is mostly used in the field of evolving mathematical expressions, computer

program generation, and classification.

Careful analysis of available publications on grammatical evolution applications shows that

this approach, despite its clear advantages over other approaches, is still used by a minority

of projects. For example, the number of available projects using neural networks and projects

using GE is non-comparable.

J. Skrzyński Selected Tools for Grammatical Evolution.

18.3. Conclusion on GE potential applications 117

In spite of much lower developers’ and researchers’ interest than the artificial neural net-

works receive, models developed by GE show significant advantages over their ANN competi-

tors.

– Ability to work on limited dataset — In real-life scenarios, access to data sources may be

limited, posing a serious issue in terms of preparing the training data.

– Efficiency of training/evolution — Neural networks may take a lot more time to get

trained than GE to evolve a good solution. That is caused by additional, refined, knowl-

edge introduced into the system by use of CFG.

– Explainability — One of GE’s goals is to produce a solution that is simple and possible

to understand by humans, which is hardly possible in terms of ANN.

– Safety — It is possible to perform extensive analysis of the expected behavior of the

system in edge cases using formal methods.

To conclude, it may be said that GE is still not widely used, but it does provide solutions to

many of current issues with other approaches.

J. Skrzyński Selected Tools for Grammatical Evolution.

118 18.3. Conclusion on GE potential applications

J. Skrzyński Selected Tools for Grammatical Evolution.

19. Further work

19.1. Better comparison

Quality of tool comparison could be increased as current may suffer from some issues —

mostly related to small developers’ interest in particular tools caused by narrow tool special-

ization, like depending only on official sources that have no other sources maintained by 3rd

parties to perform a cross-check of presented information.

19.1.1. Expert knowledge on each tool

Expert knowledge could be potentially used to increase the accuracy of tools’ quality anal-

ysis. Most of the presented conclusions were based on information gathered from available

sources and own experiments, leading to a danger of omitting some important features or infor-

mation on the quality of the tool.

Using the knowledge of experts who use the tool would provide valuable notes on that

tool. Unfortunately, access to that kind of knowledge is very limited due to the small size of

communities around GE tools.

19.1.2. Exploring tools in depth

As an additional source of information about the tool, the code itself may be used. Such an

approach would provide a clear insight into the mechanics behind the tool. Such an approach

would result in gaining detailed knowledge, but it comes with a huge cost of an enormous

amount of consumed time.

19.2. Further literature review

This text describes only a subset of available tools that were chosen based on the described

features and the state of maintenance of the tool. It is possible that there exist still some new

119

120 19.3. Preparing own solution based on gained experience

tools that had not been found yet but do provide better quality. Searching for publications about

new tools is complicated due to lack of popularity of new solutions. Often they are not listed

with more popular tools, and it is required to extensively search to reach them. An example of

such tool is GRAPE. It is not described widely yet and there is a single paper describing it, not

to mention lack of its presence on lists of GE tools. That leaves a huge field for improvement,

as it is even difficult to estimate the probable number of publications to be searched through.

Additionally, there are many more publications handling topics of fine-tuning the evolu-

tionary process. Using better parameters may influence the comparison of tools significantly.

Therefore, exploring the topic of fine-tuning GE models may result in changing execution times

or improving accuracy of some tools.

19.3. Preparing own solution based on gained experience

19.3.1. Motivation

Based on gained information about available tools and their issues, it is possible to design

new tool, combining approaches presented by different tools.

19.3.2. Usability

Having gathered all advantages and features, that have significant influence on each tools’

usability, it is possible to maximize the usability of new tool.

Some of such features were for example handling of indentation, designing and passing

own fitness function to the tool in convenient way, precision, automatic report generation, ease

of installation.

Moreover, it would be crucial to remember about correct and clear documentation, numer-

ous examples and guides explaining how to begin using the tool.

19.3.3. Potential benefits

A well-designed tool accompanied by a learning resources could increase popularity of GE

approach, allowing its development and further propagation of XAI idea.

J. Skrzyński Selected Tools for Grammatical Evolution.

20. Program used to generate plots of functions us-
ing Matplotlib

The program presented in this chapter was used to generate visual interpretations of

PonyGE2 results. It does contain definition of auxiliary functions taken directly from PonyGE2

sources (src/utilities/fitness/math_functions.py) to ensure right interpreta-

tion of result.

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 import matplotlib as mpl

5

6

7

8 from math import ceil

9 np.seterr(all="raise")

10

11

12 def return_one_percent(num, pop_size):

13 """

14 Returns either one percent of the population size or a given number,

15 whichever is larger.

16

17 :param num: A given number of individuals (NOT a desired percentage of

18 the population).

19 :param pop_size: A given population size.

20 :return: either one percent of the population size or a given number,

21 whichever is larger.

22 """

23

24 # Calculate one percent of the given population size.

25 percent = int(round(pop_size / 100))

26

121

122

27 # Return the biggest number.

28 if percent < num:

29 return num

30 else:

31 return percent

32

33

34 def return_percent(num, pop_size):

35 """

36 Returns [num] percent of the population size.

37

38 :param num: A desired percentage of the population.

39 :param pop_size: A given population size.

40 :return: [num] percent of the population size.

41 """

42

43 return int(round(num * pop_size / 100))

44

45

46 def aq(a, b):

47 """aq is the analytic quotient, intended as a "better protected

48 division", from: Ji Ni and Russ H. Drieberg and Peter I. Rockett,

49 "The Use of an Analytic Quotient Operator in Genetic Programming",

50 IEEE Transactions on Evolutionary Computation.

51

52 :param a: np.array numerator

53 :param b: np.array denominator

54 :return: np.array analytic quotient, analogous to a / b.

55

56 """

57 return a / np.sqrt(1.0 + b ** 2.0)

58

59

60 def pdiv(x, y):

61 """

62 Koza’s protected division is:

63

64 if y == 0:

65 return 1

66 else:

67 return x / y

68

69 but we want an eval-able expression. The following is eval-able:

J. Skrzyński Selected Tools for Grammatical Evolution.

123

70

71 return 1 if y == 0 else x / y

72

73 but if x and y are Numpy arrays, this creates a new Boolean

74 array with value (y == 0). if doesn’t work on a Boolean array.

75

76 The equivalent for Numpy is a where statement, as below. However

77 this always evaluates x / y before running np.where, so that

78 will raise a ’divide’ error (in Numpy’s terminology), which we

79 ignore using a context manager.

80

81 In some instances, Numpy can raise a FloatingPointError. These are

82 ignored with ’invalid = ignore’.

83

84 :param x: numerator np.array

85 :param y: denominator np.array

86 :return: np.array of x / y, or 1 where y is 0.

87 """

88 try:

89 with np.errstate(divide=’ignore’, invalid=’ignore’):

90 return np.where(y == 0, np.ones_like(x), x / y)

91 except ZeroDivisionError:

92 # In this case we are trying to divide two constants, one of which

↪→ is 0

93 # Return a constant.

94 return 1.0

95

96

97 def rlog(x):

98 """

99 Koza’s protected log:

100 if x == 0:

101 return 1

102 else:

103 return log(abs(x))

104

105 See pdiv above for explanation of this type of code.

106

107 :param x: argument to log, np.array

108 :return: np.array of log(x), or 1 where x is 0.

109 """

110 with np.errstate(divide=’ignore’):

111 return np.where(x == 0, np.ones_like(x), np.log(np.abs(x)))

J. Skrzyński Selected Tools for Grammatical Evolution.

124

112

113

114 def ppow(x, y):

115 """pow(x, y) is undefined in the case where x negative and y

116 non-integer. This takes abs(x) to avoid it.

117

118 :param x: np.array, base

119 :param y: np.array, exponent

120 :return: np.array x**y, but protected

121

122 """

123 return np.abs(x) ** y

124

125

126 def ppow2(x, y):

127 """pow(x, y) is undefined in the case where x negative and y

128 non-integer. This takes abs(x) to avoid it. But it preserves

129 sign using sign(x).

130

131 :param x: np.array, base

132 :param y: np.array, exponent

133 :return: np.array, x**y, but protected

134 """

135 return np.sign(x) * (np.abs(x) ** y)

136

137

138 def psqrt(x):

139 """

140 Protected square root operator

141

142 :param x: np.array, argument to sqrt

143 :return: np.array, sqrt(x) but protected.

144 """

145 return np.sqrt(np.abs(x))

146

147

148 def psqrt2(x):

149 """

150 Protected square root operator that preserves the sign of the original

151 argument.

152

153 :param x: np.array, argument to sqrt

154 :return: np.array, sqrt(x) but protected, preserving sign.

J. Skrzyński Selected Tools for Grammatical Evolution.

125

155 """

156 return np.sign(x) * (np.sqrt(np.abs(x)))

157

158

159 def plog(x):

160 """

161 Protected log operator. Protects against the log of 0.

162

163 :param x: np.array, argument to log

164 :return: np.array of log(x), but protected

165 """

166 return np.log(1.0 + np.abs(x))

167

168

169 def ave(x):

170 """

171 Returns the average value of a list.

172

173 :param x: a given list

174 :return: the average of param x

175 """

176

177 return np.mean(x)

178

179

180 def percentile(sorted_list, p):

181 """

182 Returns the element corresponding to the p-th percentile

183 in a sorted list

184

185 :param sorted_list: The sorted list

186 :param p: The percentile

187 :return: The element corresponding to the percentile

188 """

189

190 return sorted_list[ceil(len(sorted_list) * p / 100) - 1]

191

192

193 def binary_phen_to_float(phen, n_codon, min_value, max_value):

194 """

195 This method converts a phenotype, defined by a

196 string of bits in a list of float values

197

J. Skrzyński Selected Tools for Grammatical Evolution.

126

198 :param phen: Phenotype defined by a bit string

199 :param n_codon: Number of codons per gene, defined in the grammar

200 :param min_value: Minimum value for a gene

201 :param max_value: Maximum value for a gene

202 :return: A list os float values, representing the chromosome

203 """

204

205 i, count, chromosome = 0, 0, []

206

207 while i < len(phen):

208 # Get the current gene from the phenotype string.

209 gene = phen[i:(i + n_codon)]

210

211 # Convert the bit string in gene to an float/int

212 gene_i = int(gene, 2)

213 gene_f = float(gene_i) / (2 ** n_codon - 1)

214

215 # Define the variation for the gene

216 delta = max_value[count] - min_value[count]

217

218 # Append the float value to the chromosome list

219 chromosome.append(gene_f * delta + min_value[count])

220

221 # Increment the index and count.

222 i = i + n_codon

223 count += 1

224

225 return chromosome

226

227

228 def ilog(n, base):

229 """

230 Find the integer log of n with respect to the base.

231

232 >>> import math

233 >>> for base in range(2, 16 + 1):

234 ... for n in range(1, 1000):

235 ... assert ilog(n, base) == int(math.log(n, base) + 1e-10), ’%s

↪→ %s’ % (n, base)

236 """

237 count = 0

238 while n >= base:

239 count += 1

J. Skrzyński Selected Tools for Grammatical Evolution.

127

240 n //= base

241 return count

242

243

244 def sci_notation(n, prec=3):

245 """

246 Represent n in scientific notation, with the specified precision.

247

248 >>> sci_notation(1234 * 10**1000)

249 ’1.234e+1003’

250 >>> sci_notation(10**1000 // 2, prec=1)

251 ’5.0e+999’

252 """

253 base = 10

254 exponent = ilog(n, base)

255 mantissa = n / base ** exponent

256 return ’{0:.{1}f}e{2:+d}’.format(mantissa, prec, exponent)

257

258

259 # Code above is taken directly form source of PonyGE2 to

260 # ensure that visualisation is accurate.

261 #########################

262 # Creating np array for x

263 x = np.arange(-100,101,.5)

264 # Computing value of formula returned by program

265 y = x-np.exp(np.tanh(10.00))*plog(80.49-x)

266 # Computing values of the deired folrmula

267 y_desired = np.sin(0.1*x) * 20 + x - 10

268

269

270 WIDTH_SIZE = 10

271 HEIGHT_SIZE = 5

272

273 fig, (ax1, ax2) = plt.subplots(1, 2,figsize=(WIDTH_SIZE,HEIGHT_SIZE))

274 ax1.plot(x, y) # Plot generated data on the axes1.

275 ax2.plot(x, y_desired) # Plot desired data on the axes2.

276

277 ax1.set_xlabel(’x’)

278 ax1.set_ylabel(’y’)

279 ax1.set_title(’Achieved result’)

280

281 ax2.set_xlabel(’x’)

282 ax2.set_ylabel(’y’)

J. Skrzyński Selected Tools for Grammatical Evolution.

128

283 ax2.set_title(’Desired function’)

284

285

286 plt.show()

The code was inspired by examples from online sources [58], [13], [14] and does contain code

taken from PonyGE2 repository to maintain a constant interpretation of special functions.

J. Skrzyński Selected Tools for Grammatical Evolution.

21. Program used to generate the dataset that con-
tains a noise

The program presented below was used in experiments to prepare a data set, in a format

used by PonyGE2, and introduce a noise that is generated according to the normal distribution

with parameters specified in the code.

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 import matplotlib as mpl

5

6 # Creating np array for x

7 x = np.arange(-100,101,.5)

8 # Computing accurate function values

9 y = np.sin(0.1*x)*20+x-10

10

11

12 # Noise specification

13 mean = 0

14 standard_deviation = 10

15

16 # Generation of the noise

17 noise = np.random.normal(mean,standard_deviation, len(x))

18

19 # Introducing the noise

20 realistic_y = y + noise

21

22 WIDTH_SIZE = 10

23 HEIGHT_SIZE = 5

24

25 fig, (ax1, ax2) = plt.subplots(1, 2,figsize=(WIDTH_SIZE,HEIGHT_SIZE)) #

↪→ Create figure for plots and plots.

26 ax1.plot(x, y, ’.’) # Plot accurate data on the axes1.

129

130

27 ax2.plot(x, realistic_y, ’.’) # Plot noisy data on the axes2.

28

29 ax1.set_xlabel(’x’)

30 ax1.set_ylabel(’y’)

31 ax1.set_title(’Pure data’)

32

33 ax2.set_xlabel(’x’)

34 ax2.set_ylabel(’y’)

35 ax2.set_title(’Data with noise’)

36

37 plt.show()

38

39 test_trail = zip(x,y)

40 normal_trail = zip(x,realistic_y)

41

42 print("### Pure data ###")

43

44 for x,y in test_trail:

45 print(x,y,sep=’\t’,end=’\n’)

46

47 print("### Data with noise ###")

48

49 for x,y in normal_trail:

50 print(x,y,sep=’\t’,end=’\n’)

The code was inspired by examples from online sources [58], [13] and [14].

J. Skrzyński Selected Tools for Grammatical Evolution.

Bibliography

[1] Pączkowanie. //pl.wikipedia.org/wiki/P%C4%85czkowanie?oldid=

71226831, wrzesień 2023. [Accessed: 2024-01-09 03:42Z].

[2] Peter Adam. Introduction to ponyge2 for grammati-

cal evolution. https://towardsdatascience.com/

introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a,

July 2017.

[3] Hasanen Alyasiri, John A Clark, Ali Malik, and Ruairí de Fréin. Grammatical evolution

for detecting cyberattacks in internet of things environments. In 2021 International Con-

ference on Computer Communications and Networks (ICCCN), pages 1–6. IEEE, 2021.

[4] Nikolaos Anastasopoulos, Ioannis G. Tsoulos, and Alexandros Tzallas. Genclass: A par-

allel tool for data classification based on grammatical evolution. SoftwareX, 16:100830,

2021.

[5] Dimitrios Angelis, Filippos Sofos, and Theodoros E. Karakasidis. Artificial intelligence

in physical sciences: Symbolic regression trends and perspectives. Archives of Computa-

tional Methods in Engineering, 30(6):3845–3865, April 2023.

[6] John W Backus, Friedrich L Bauer, Julien Green, Charles Katz, John McCarthy, Peter

Naur, Alan J Perlis, Heinz Rutishauser, Klaus Samelson, Bernard Vauquois, et al. Revised

report on the algorithmic language algol 60. The Computer Journal, 5(4):349–367, 1963.

[7] John Warner Backus. The syntax and semantics of the proposed international algebraic

language of the zurich acm-gamm conference. In IFIP Congress, 1959.

[8] Tatenda Herbert. Chareka and Nelishia Pillay. A study of fitness functions for data classifi-

cation using grammatical evolution. 2016 Pattern Recognition Association of South Africa

and Robotics and Mechatronics International Conference (PRASA-RobMech), pages 1–4,

2016.

131

//pl.wikipedia.org/wiki/P%C4%85czkowanie?oldid=71226831
//pl.wikipedia.org/wiki/P%C4%85czkowanie?oldid=71226831
https://towardsdatascience.com/introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a
https://towardsdatascience.com/introduction-to-ponyge2-for-grammatical-evolution-d51c29f2315a

132 BIBLIOGRAPHY

[9] B.J.. Copeland. artificial intelligence. https://www.britannica.com/

technology/artificial-intelligence. [Accessed 19 October 2023.].

[10] Cleber A.C.F. da Silva, Daniel Carneiro Rosa, Péricles B.C. Miranda, Filipe R. Cordeiro,

Tapas Si, André C.A. Nascimento, Rafael F. L. Mello, and Paulo S. G. de Mattos Neto.

A multi-objective grammatical evolution framework to generate convolutional neural net-

work architectures. In 2021 IEEE Congress on Evolutionary Computation (CEC), pages

2187–2194, 2021.

[11] Allan de Lima, Samuel Carvalho, Douglas Mota Dias, Enrique Naredo, Joseph P. Sulli-

van, and Conor Ryan. Grape: Grammatical algorithms in python for evolution. Signals,

3(3):642–663, 2022.

[12] Anthony Mihirana De Silva and Philip HW Leong. Grammar-based feature generation

for time-series prediction. Springer, 2015.

[13] The Matplotlib development team. matplotlib.axes.axes.plot - matplotlib 3.8.2 documen-

tation. https://matplotlib.org/stable/api/_as_gen/matplotlib.

axes.Axes.plot.html#matplotlib.axes.Axes.plot.

[14] The Matplotlib development team. Quick start guide - matplotlib 3.8.2 documenta-

tion. https://matplotlib.org/stable/users/explain/quick_start.

html#quick-start.

[15] Grant Dick and Peter A. Whigham. Initialisation and grammar design in grammar-guided

evolutionary computation. https://arxiv.org/abs/2204.07410, 2022.

[16] Jessica Barbosa Diniz, Filipe R. Cordeiro, Pericles B. C. Miranda, and Laura A. Tomaz

Da Silva. A grammar-based genetic programming approach to optimize convolutional

neural network architectures. In Anais do XV Encontro Nacional de Inteligência Artificial

e Computacional (ENIAC 2018), ENIAC 2018. Sociedade Brasileira de Computação -

SBC, October 2018.

[17] Jessica Barbosa Diniz, Filipe R Cordeiro, Pericles BC Miranda, and Laura A Tomaz

da Silva. A grammar-based genetic programming approach to optimize convolutional

neural network architectures. In Anais do XV Encontro Nacional de Inteligência Artificial

e Computacional, pages 82–93. SBC, 2018.

[18] Dimiter Dobrev. A definition of artificial intelligence. https://arxiv.org/abs/

1210.1568, 2012.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/artificial-intelligence
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot
https://matplotlib.org/stable/users/explain/quick_start.html#quick-start
https://matplotlib.org/stable/users/explain/quick_start.html#quick-start
https://arxiv.org/abs/2204.07410
https://arxiv.org/abs/1210.1568
https://arxiv.org/abs/1210.1568

BIBLIOGRAPHY 133

[19] Don Smiley <ds@sidorof.com>. Pyneurgenpython neural genetic algorithm hybrids api -

grammatical_evolution module. https://pyneurgen.sourceforge.net/api/

grammatical_evolution_api.html#GrammaticalEvolution.

[20] Don Smiley <ds@sidorof.com>. Pyneurgenpython neural genetic algorithm hy-

brids api - suggestions for using grammatical evolution. https://pyneurgen.

sourceforge.net/ge_suggestions.html.

[21] Anthony Mihirana de Silva Farzad Noorian. Package grammatical evolution for

r. https://cran.r-project.org/web/packages/gramEvol/gramEvol.

pdf, October 2022.

[22] Philip H.W. Leong Farzad Noorian, Anthony M. de Silva. Grammatical evolution: A tuto-

rial using gramevol. https://fnoorian.github.io/gramEvol/inst/doc/

ge-intro.html.

[23] Michael Fenton, James McDermott, David Fagan, Stefan Forstenlechner, Erik Hemberg,

and Michael O’Neill. Ponyge2 wiki - about ponyge2. https://github.com/

PonyGE/PonyGE2/wiki/Introduction#about-ponyge2. [Accessed: 27-11-

2023].

[24] Michael Fenton, James McDermott, David Fagan, Stefan Forstenlechner, Erik Hem-

berg, and Michael O’Neill. Ponyge2 wiki documentation. https://github.com/

PonyGE/PonyGE2/wiki. [Accessed 13-11-2023].

[25] Michael Fenton, James McDermott, David Fagan, Stefan Forstenlechner, Erik Hemberg,

and Michael O’Neill. Ponyge2: grammatical evolution in python. In Proceedings of the

Genetic and Evolutionary Computation Conference Companion, GECCO ’17. ACM, July

2017.

[26] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau,

and Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal of Machine

Learning Research, 13:2171–2175, jul 2012.

[27] Python Software Foundation. Full grammar specification - python 3.12.1. https://

docs.python.org/3/reference/grammar.html.

[28] Meghana Kshirsagar Gauri Vaidya. Pycom 2022 - workshop: Shield: Do it the safe way.

https://python.ie/previous-pycons/pycon-2022/talks/, 2022. [Ac-

cessed 13-11-2023].

J. Skrzyński Selected Tools for Grammatical Evolution.

https://pyneurgen.sourceforge.net/api/grammatical_evolution_api.html#GrammaticalEvolution
https://pyneurgen.sourceforge.net/api/grammatical_evolution_api.html#GrammaticalEvolution
https://pyneurgen.sourceforge.net/ge_suggestions.html
https://pyneurgen.sourceforge.net/ge_suggestions.html
https://cran.r-project.org/web/packages/gramEvol/gramEvol.pdf
https://cran.r-project.org/web/packages/gramEvol/gramEvol.pdf
https://fnoorian.github.io/gramEvol/inst/doc/ge-intro.html
https://fnoorian.github.io/gramEvol/inst/doc/ge-intro.html
https://github.com/PonyGE/PonyGE2/wiki/Introduction#about-ponyge2
https://github.com/PonyGE/PonyGE2/wiki/Introduction#about-ponyge2
https://github.com/PonyGE/PonyGE2/wiki
https://github.com/PonyGE/PonyGE2/wiki
https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html
https://python.ie/previous-pycons/pycon-2022/talks/

134 BIBLIOGRAPHY

[29] David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and Guang-

Zhong Yang. Xai—explainable artificial intelligence. Science robotics, 4(37):eaay7120,

2019.

[30] Krishn Kumar Gupt, Muhammad Adil Raja, Aidan Murphy, Ayman Youssef, and Conor

Ryan. Gelab – the cutting edge of grammatical evolution. IEEE Access, 10:38694–38708,

2022.

[31] Branimir K. Hackenberger. R software: unfriendly but probably the best. Croatian Medi-

cal Journal, 61(1):66–68, February 2020.

[32] Thomas Helmuth and Lee Spector. General program synthesis benchmark suite. In

Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation,

GECCO ’15, page 1039–1046, New York, NY, USA, 2015. Association for Computing

Machinery.

[33] R. Hurbans. Grokking Artificial Intelligence Algorithms. Manning, 2020.

[34] ISO. Iso/iec 14977:1996 information technology - syntactic metalanguage - extended bnf.

Standard, ISO, 1996. [Accessed 15-11-2023].

[35] K.D. Jagreet. Artificial Intelligence and Deep Learning for Decision Makers. BPB Publi-

cations, 2019.

[36] Pedro José Pereira, Paulo Cortez, and Rui Mendes. evoltree: Evolutionary decision trees.

https://pypi.org/project/evoltree/.

[37] D.E. Kazaryan and A.V. Savinkov. Grammatical evolution for neural network optimization

in the control system synthesis problem. Procedia Computer Science, 103:14–19, 2017.

XII International Symposium Intelligent Systems 2016, INTELS 2016, 5-7 October 2016,

Moscow, Russia.

[38] John R. Koza and Riccardo Poli. Genetic Programming, pages 127–164. Springer US,

Boston, MA, 2005.

[39] J.R. Koza. Genetic Programming: On the Programming of Computers by Means of Natu-

ral Selection. A Bradford book. Bradford, 1992.

[40] S.J. Naik. Think AI: Explore the flavours of Machine Learning, Neural Networks, Com-

puter Vision and NLP with powerful python libraries (English Edition). ITpro collection.

BPB Publications, 2022.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://pypi.org/project/evoltree/

BIBLIOGRAPHY 135

[41] Miguel Nicolau and Alexandros Agapitos. Understanding grammatical evolution: Gram-

mar design. Handbook of grammatical evolution, pages 23–53, 2018.

[42] Adam Nohejl. Grammatical evolution. bathesis, Charles University in Prague, Faculty of

Mathematics and Physics, 2009.

[43] Adam Nohejl. Grammar-based genetic programming. mathesis, Charles University in

Prague, Faculty of Mathematics and Physics, 2011.

[44] Farzad Noorian, Anthony M de Silva, and Philip HW Leong. gramevol: Grammatical

evolution in r. Journal of Statistical Software, 71:1–26, 2016.

[45] Farzad Noorian, Anthony M de Silva, and Philip HW Leong. Grammatical evolution: A

tutorial using gramevol. Massachusetts Institute of Technology, 2016.

[46] User of geeksforgeeks.org. Bnf notation in compiler design. https:

//www.geeksforgeeks.org/bnf-notation-in-compiler-design/, Jul

2021. [Accessed 15-11-2023].

[47] Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Transactions on Evolu-

tionary Computation, 5(4):349–358, 2001.

[48] Stack Overflow. Stack overflow developer survey 2023 - most popu-

lar technologies. https://survey.stackoverflow.co/2023/

#section-most-popular-technologies-programming-scripting-and-markup-languages,

May 2023.

[49] A.P. Parkes. Introduction to Languages, Machines and Logic: Computable Languages,

Abstract Machines and Formal Logic. Springer London, 2012.

[50] PROJECTPRO. Why r programming language still rules

data science? https://www.projectpro.io/article/

why-r-programming-language-still-rules-data-science/161,

2023.

[51] David Robinson. The impressive growth of r. https://stackoverflow.blog/

2017/10/10/impressive-growth-r/, 2017.

[52] Conor Ryan, JJ Collins, and Michael O. Neill. Grammatical evolution: Evolving programs

for an arbitrary language. In Wolfgang Banzhaf, Riccardo Poli, Marc Schoenauer, and Ter-

ence C. Fogarty, editors, Genetic Programming, pages 83–96, Berlin, Heidelberg, 1998.

Springer Berlin Heidelberg.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://www.geeksforgeeks.org/bnf-notation-in-compiler-design/
https://www.geeksforgeeks.org/bnf-notation-in-compiler-design/
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://www.projectpro.io/article/why-r-programming-language-still-rules-data-science/161
https://www.projectpro.io/article/why-r-programming-language-still-rules-data-science/161
https://stackoverflow.blog/2017/10/10/impressive-growth-r/
https://stackoverflow.blog/2017/10/10/impressive-growth-r/

136 BIBLIOGRAPHY

[53] Sergey Salihov, Dmitriy Maltsov, Maria Samsonova, and Konstantin Kozlov. Solution of

mixed-integer optimization problems in bioinformatics with differential evolution method.

Mathematics, 9(24):3329, 2021.

[54] Dominik Sepioło and Antoni Ligęza. Towards model-driven explainable artificialintelli-

gence. an experiment with shallowmethods versus grammatical evolution.

[55] Daniel Shanks. Solved and unsolved problems in number theory, volume 297. American

Mathematical Soc., 2001.

[56] Anupriya Shukla, Hari Mohan Pandey, and Deepti Mehrotra. Comparative review of selec-

tion techniques in genetic algorithm. In 2015 international conference on futuristic trends

on computational analysis and knowledge management (ABLAZE), pages 515–519. IEEE,

2015.

[57] D Smiley. Pyneurgen: Python neural genetic algorithm hybrids. Release 0.3, URL

http://pyneurgen.sourceforge.net, 2012.

[58] MS Somanna. Guide to adding noise to synthetic data us-

ing python and numpy. https://medium.com/@ms_somanna/

guide-to-adding-noise-to-your-data-using-python-and-numpy-c8be815df524.

[59] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling

deep neural networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841,

oct 2019.

[60] Tuong Manh Vu. Software review: Pony ge2. Genetic Programming and Evolvable Ma-

chines, 22(3):383–385, Sep 2021.

[61] Hao Wang, Yitan Lou, and Thomas Bäck. Hyper-parameter optimization for improving

the performance of grammatical evolution. In 2019 IEEE Congress on Evolutionary Com-

putation (CEC), pages 2649–2656, 2019.

[62] Eric W. Weisstein. Prime counting function. https://mathworld.wolfram.com/

PrimeCountingFunction.html.

[63] Wikipedia contributors. Genetic programming — Wikipedia, the free ency-

clopedia. https://en.wikipedia.org/w/index.php?title=Genetic_

programming&oldid=1178930607, 2023. [Online; accessed 24-December-2023].

J. Skrzyński Selected Tools for Grammatical Evolution.

https://medium.com/@ms_somanna/guide-to-adding-noise-to-your-data-using-python-and-numpy-c8be815df524
https://medium.com/@ms_somanna/guide-to-adding-noise-to-your-data-using-python-and-numpy-c8be815df524
https://mathworld.wolfram.com/PrimeCountingFunction.html
https://mathworld.wolfram.com/PrimeCountingFunction.html
https://en.wikipedia.org/w/index.php?title=Genetic_programming&oldid=1178930607
https://en.wikipedia.org/w/index.php?title=Genetic_programming&oldid=1178930607

BIBLIOGRAPHY 137

[64] Wikipedia contributors. Grammatical evolution — Wikipedia, the free encyclope-

dia. https://en.wikipedia.org/w/index.php?title=Grammatical_

evolution&oldid=1183182329, 2023. [Accessed: 16-11-2023].

[65] Wikipedia contributors. Kleene star — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/w/index.php?title=Kleene_star&

oldid=1165979969, 2023. [Online; accessed 13-January-2024].

[66] Wikipedia contributors. Ohm’s law — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/w/index.php?title=Ohm%27s_law&

oldid=1191985219, 2023. [Online; accessed 9-January-2024].

[67] Wikipedia contributors. Selection (genetic algorithm) — Wikipedia, the free ency-

clopedia. https://en.wikipedia.org/w/index.php?title=Selection_

(genetic_algorithm)&oldid=1178932579, 2023. [Online; accessed 9-

January-2024].

[68] Wikipedia contributors. Symbolic regression — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Symbolic_

regression&oldid=1183921862, 2023. [Online; accessed 28-November-2023].

[69] Wikipedia contributors. Notacja EBNF [online]. wikipedia : wolna encyklopedia,

2023-11-12 00:06Z. [Accessed: 5-11-2023].https://pl.wikipedia.org/wiki/

Notacja_EBNF?oldid=71821429.

[70] Wikipedia contributors. Genetic algorithm — Wikipedia, the free encyclope-

dia. https://en.wikipedia.org/w/index.php?title=Genetic_

algorithm&oldid=1193124228, 2024. [Online; accessed 9-January-2024].

[71] Wikipedia contributors. Software quality — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Software_

quality&oldid=1193814316, 2024.

[72] Saneh Lata Yadav and Asha Sohal. Comparative study of different selection techniques

in genetic algorithm. International Journal of Engineering, Science and Mathematics,

6(3):174–180, 2017.

[73] Zhen Zhong, Ribhu Sengupta, Kamran Paynabar, and Lance A. Waller. Multi-objective

allocation of covid-19 testing centers: Improving coverage and equity in access. https:

//arxiv.org/abs/2110.09272, 2021.

J. Skrzyński Selected Tools for Grammatical Evolution.

https://en.wikipedia.org/w/index.php?title=Grammatical_evolution&oldid=1183182329
https://en.wikipedia.org/w/index.php?title=Grammatical_evolution&oldid=1183182329
https://en.wikipedia.org/w/index.php?title=Kleene_star&oldid=1165979969
https://en.wikipedia.org/w/index.php?title=Kleene_star&oldid=1165979969
https://en.wikipedia.org/w/index.php?title=Ohm%27s_law&oldid=1191985219
https://en.wikipedia.org/w/index.php?title=Ohm%27s_law&oldid=1191985219
https://en.wikipedia.org/w/index.php?title=Selection_(genetic_algorithm)&oldid=1178932579
https://en.wikipedia.org/w/index.php?title=Selection_(genetic_algorithm)&oldid=1178932579
https://en.wikipedia.org/w/index.php?title=Symbolic_regression&oldid=1183921862
https://en.wikipedia.org/w/index.php?title=Symbolic_regression&oldid=1183921862
https://pl.wikipedia.org/wiki/Notacja_EBNF?oldid=71821429
https://pl.wikipedia.org/wiki/Notacja_EBNF?oldid=71821429
https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&oldid=1193124228
https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&oldid=1193124228
https://en.wikipedia.org/w/index.php?title=Software_quality&oldid=1193814316
https://en.wikipedia.org/w/index.php?title=Software_quality&oldid=1193814316
https://arxiv.org/abs/2110.09272
https://arxiv.org/abs/2110.09272

	Artificial intelligence
	Definition of artificial intelligence and its goals
	Generalization of knowledge
	Modern AI algorithms and their applications
	Issues posed by use of artificial neural networks
	Explainable AI, its challenges and its role

	Theoretical foundations of GE algorithms
	Genetic Programming
	Introduction
	Details

	Formal Languages and grammars
	Non-terminals
	Terminals
	Production rules
	Start symbol

	Context Free Grammar – CFG
	BNF
	EBNF
	Grammatical Evolution

	Details of Grammatical Evolution
	How GE works
	Defining a grammar
	Defining a fitness function
	Selection of individuals for next generation
	Evolution — Creating subsequent generations

	Requirements of users
	Technical aspects
	Time efficiency
	Compatibility
	Dependencies

	Non-measurable features
	Ease of learning
	Life cycle of tool
	Community around the tool
	Documentation and resources
	Quality of code and ease of modification
	License
	Current user knowledge and preferences

	Conclusion on requirements

	Details on analysis and comparison of tools. Selected issues.
	Differences in architecture of tool
	Differences in provided functionalities
	Different target platform
	Different way of providing input data
	Conclusion on possible issues
	Presentation of tools
	Method of comparison

	PonyGE2
	Literature
	Documentation
	Requirements
	Evolutionary parameters
	Grammars
	Details on genome
	Fitness function

	Maintenance
	Installation
	Usage
	Grammar design
	Fitness function

	Retrieving evolved results
	Examples
	Regression
	Program synthesis

	General remarks

	PyNeurGen
	Literature and sources of information
	Documentation
	Maintenance
	Installation
	Usage
	Retrieving evolved results
	Example
	General remarks

	gramEvol
	Literature
	Documentation
	Maintenance
	Installation
	Usage
	Retrieving evolved results
	Example
	General remarks

	Other available tools
	GRAPE
	GELab
	PonyGE
	AGE
	GenClass

	Applications described from theoretical point of view
	Symbolic regression
	Extracting rules for a classifier from delivered dataset
	Generating the architecture of neural networks
	Creating a syntactically valid program
	Conclusion on theoretical applications

	Real life applications
	Discovery of relations between data and retrieving the original formula
	Solving models describing the placement of facilities
	Detecting cybersecurity threats

	Estimation of the function counting primes using PonyGE2
	Used grammar
	Data set
	PonyGE2 parameters
	Results

	Estimation of the standard acceleration gravity value from simple pendulum measurements
	Introduction and data set
	Used grammar
	Used parameters
	Achieved results
	Enriched data set
	Second attempt
	Conclusion

	Regression over data set with introduced noise using PonyGE2
	Introduction and data set
	Script used for data set generation and data set details
	Test trial
	Test on data with noise
	Conclusions

	Evolving formula for function composed of at least one periodic function using PonyGE2
	Data set
	Trial with pure data
	Conclusion on the test

	Test with noise
	Conclusion on the step of the experiment

	Test with noisy data and reduced constraints
	Conclusion on the step of the experiment

	Conclusion

	Evolving a valid Python program to compute the sum of elements in a delivered array
	Introduction
	Method of individual validation and calculating fitness value
	Evaluation
	Calculating fitness

	Used grammar
	Implementation of the fitness class
	Parameters
	Results
	Conclusions

	Simple regression on the dataset generated by a polynomial of 4th order using PyNeurGen
	Introduction
	Data generation
	Data set

	Fitness calculation
	BNF grammar
	Complete program
	Results
	Remarks on used tool

	Results, summary, and conclusion
	Results of tools comparison
	General conclusion on comparison
	Final recommendation on tools

	Conclusions on performed experiments and prepared models
	Final conclusions

	Conclusion on GE potential applications

	Further work
	Better comparison
	Expert knowledge on each tool
	Exploring tools in depth

	Further literature review
	Preparing own solution based on gained experience
	Motivation
	Usability
	Potential benefits

	Program used to generate plots of functions using Matplotlib
	Program used to generate the dataset that contains a noise

