Business Rules Design and Analysis Approaches

Grzegorz J. Nalepa

Institute of Automatics
AGH University of Science and Technology
POLAND

Outline of the presentation

- Introduction the AI perspective to BRA
- Business Rules Concepts
- BR and Classic RBS
- Computer Tools for Business Rules
- Observations, Quality Issues
- A Business Rule Base Design Example
- The XTT Approach
- Conclusions

Introduction

- Focus: building Knowledge-Based Systems in the field of business software
 - -Building real-life KBS is a complex task
 - -We need Knowledge Engineering
 - -Rules: a classic knowledge representation
- Business Rules (BR) a rediscovery of a classic AI technology of RBS
- Software engineering becomes more and more knowledge-based, see the BRA
- How can AI experts help business engineers?

RBS in the Classic AI

- Rule language
- Rule base design
- Rule inference: forward vs. backward
- Rule interpretation algorithm
- An inference engine
- Complete shells
- Quality issues!

RBS Analysis

- KBS vs. computational intelligence (ANN, GA)
- Strong logical foundations (PL, FOPL, SAL)
- Formalized methods for design
- Formal analysis:
 - Verification whitebox
 - Validation
 - -Evaluation blackbox
 - -Refinement

Basics of the Business Rules Approach

- Guidelines an informal approach
- Rule types: e.g. reactive, computational
- Business concepts vocabularies (attributes)
- Emphasis on the:
 - KE process, including knowledge acquisition, business vocabularies
 - Visual BR modelling
 - -BR Management
- No explicit analysis, just testing?

Three Main Problem Areas

- Logical foundations
 - → BR classification seems to be incomplete, mixing rule syntax, semantics, and inference
 - → Semantics close to NL, no logical calculus
 - → Inference: deduction, abduction, induction
- Visual representation
 - Scalability issues
 - → Automatic transformations
- Quality issues
 - → Testing is not enough!
 - → Late evaluation problem

BR Tools Classes

- Business Rules Engines RBS shells Jess
- Design tools dedicated, general spreadsheet
- Markup languages RuleML
- Dedicated representation methods URML
- Integrated solutions Business Rules Management Systems...
- What about analysis? VALENS

Tools Main Features

- Visual knowledge representation, mainly *classic* methods, e.g. decision trees
- Machine readable rule encoding: XML
- Automatic code generation: Java
- Use of well established tools: spreadsheet?

What is the innovation of the design *process*?

General Problems: semantic gaps

The *semantic gaps* between:

- Requirements specification
- Design Representation
- Logical Model
- Physical Implementation

Not so many improvements... (NASA: R2D2C)

Problems: Quality Issues

Quality assurance:

- Automated testing
- Evaluation (blackbox)
- Validation
- Refinement
- Verification (whitebox)

A step back, compared to e.g. VALENS

What do we need V&V for?

- basic formal properties, e.g.:
 - Determinism
 - Completeness
 - Non redundancy
- translate into important system features e.g.:
 - Performance
 - Maintainability
 - Safety!
 - Happy customers?

A Simple BR Example

OpenRules – an open integrated solution

- Semi-visual design in spreadsheet
- Automated Java code generation
- Optimization: rule solver

Loan pre-qualification

- 16 rules
- 15 attributes
- forward chaining

OpenRules Design Process

- 1. describe the rules in the natural language,
- 2. define a glossary (attributes description),
- 3. use spreadsheet as the "design" tool for business rules,
- 4. fill the cells with some parts of Java code,
- 5. generate data for the runtime environment.

A Room for Improvement

- there is a clear structure in the rule base, but
- the "design" tool has no facilities to properly model this structure
- the conceptual, rule-related parts, are mixed with pseudo-code, or parts of Java code
- no analysis!

XTT Knowledge Representation

- simplicity, transparency, due to an intuitive visual tree-table knowledge specification,
- hierarchical knowledge representation
- power of the decision table representation
- knowledge manipulation flexibility
- direct knowledge representation mapping into Prolog and rule-based systems
- direct mapping to XML-based languages

XTT Table

A 1	 	An	-x	+Y	H
a11		aln	x 1	y 1	h1
		_			
an1	 	ann	жn	yn	hn
	a11	a11	a11 a1n	a11 a1n x1	all aln x1 y1

XTT Design Process

- 1. Conceptual modelling, system attributes and their functional relationships are identified, ARD helper method is used here
- 2. Logical design with on-line verification, system structure is represented as XTT hierarchy, which can be instantly analyzed
- 3. Automated implementation, when an executable Prolog code is generated, as well as XML representation.

XTT Visual Design

			П	П													?			
	?	T	+	-												alVR	aDRR	alA	aDA	aDFS
aCMI	aCMD	aLA	alVR	alVR											ò	= 1	={Low}u{t	= 1	= 1	= Give_lo
= 0	ANY	ANY	= 1	ANY	7										ľ	ANY	= High	ANY	= 1	= Researc
AHY	ANY	ANY	= 0	ANY	H										l	= 0	ANY	= 0	ANY	= Validat
	IncomeVa	alid													l		l DefineSui	nmary		
									?				+	-	l					
						аМН	aCS	aLH	aCCB	aELB	alCR	alAO	aDRR	aDRR	l					
					•	= 1	ANY	ANY	ANY	ANY	ANY	ANY	= High	ANY	\forall					
						= 0	=(100,550	= 1	ANY	ANY	ANY	ANY	= thid	ANY	L					
					•	= 0	=(550,900	= 1	=(0.000,2	=(0.000)ı	ANY	ANY	= High	AHY						
					•	= 0	=(550,900	= 1	ANY	ANY	={A}u{B}u	ANY	= High	ANY						
					•	= 0	=(550,900	ANY	ANY	ANY	={D}u{F}	AHY	= Mid	AHY						
					•	= 0	=(550,900	= 0	=(0.000,7	ANY	ANY	ANY	= Low	AHY						
					•	ANY	ANY	ANY	ANY	ANY	ANY	= Low	= Low	AHY						
					•	ANY	ANY	ANY	ANY	ANY	ANY	= thid	= thid	AHY						
					•	ANY	ANY	ANY	ANY	ANY	ANY	= High	= High	ANY						

DebtValid

XTT Prolog Representation

- Transformation from XTT to a Prolog-based representation a *logically equivalent* code
- It can be executed, analyzed, verified, optimized, translated to another language.
- Rules are represented as Prolog *facts*. This allows for encoding virtually any structured information, a need for a meta-interpreter.

Rule Analysis in XTT

• The external analysis, verification and optimization modules are implemented in Prolog. Each module carries out the analysis of the given property, e.g. *subsumption*:

```
vsu(T):-
   rule(T,N1,P1,R1,A1,D1,_,_), rule(T,N2,P2,R2,A2,D2,_,_),
   N1 \= N2, subsumes(P1,P2), covers(D1,D2),
   write('*** Rule: '),
   write(T),write('.'),write(N1),write(' subsumes: '),
   write(T),write('.'),write(N2), n1, fail.

vsu(T):-
   write('No more subsumption in table '), write(T), n1.
```

XTT Usability – Future Work

Promising results, but:

- Research and concepts, not technology.
- Tools early prototypes (Mirella Designer).
- As of now analysis plugins need extensions.
- Business rules support not complete.
- Only preliminary integration with Java.

The Hekate Project

Goals of the project are:

- Incorporate KE into SE
- Extend rule-based technology to build the logic core of the application
- Run the core using embedded Prolog
- Integrate it with a Java business application
- Provide tools for formal analysis of the core
- Fill the semantic gaps in the design process...

Concluding Remarks

- BRA, an application of the "good old" RBS.
- BR community could benefit from talking to AI experts.
- We need more *conceptual innovation*, not just technology integration.
- Quality issues are important!
- System analysis after the design is *late*!
- XTT aims at providing visual design and formal analysis *during* the design.
- See references in the slide notes.

Thank you!