On ALSY Rules Formulation and Inference

Unknown Anonymous and Nameless Nobody
Some University
in a distant country
last street
authors@suniv.distant

Abstract

In the paper knowledge representation and inference issues
for rule-based systems are discussed. The paper deals with
improving logical calculus of Set Attributive Logic found-
ing an expressive rule language XTT?. Representation exten-
sions are introduced, and practical inference rules provided.
Examples of rule analysis for the language are given. Visual
design tool HQed assuring rule quality is also presented.

Introduction

The expressiveness of knowledge representation is crucial
for intelligent systems (van Harmelen, Lifschitz, and Porter
2007). Hence research on novel representation techniques
still remains an active area. Decision rules and other log-
ically equivalent formalisms, such as decision trees and ta-
bles play a crucial role in a number of knowledge-based sys-
tems (Giarratano and Riley 2005; Morgan 2002). One of the
strongest aspects of rules, is their formal description, that
allows for a formal analysis and refinement.

This paper continues the research discussed in (?). Bas-
ing on some advances in Set Attributive Logic (SAL) intro-
duced in (?), recently extended through the Attribute Logic
with Set Values (ALSV) in (?), the paper provides a pro-
posal of decision rules formalization that has an extended
expressive power. The ALSV calculus extends the clas-
sical Relational Database (Connolly, Begg, and Strechan
1999) knowledge representation capabilities with complex
attribute description, allow for the representation and infer-
ence with non-atomic values of attributes (the so-called set-
valued attributes). Based on ALSV an expressive rule lan-
guage called XTT? (eXtended Tabular Trees) is proposed.
It is a development of the XTT language discussed in (?).

It the paper the basic introduction to ALSV(FD) is given
(ALSYV over Finite Domains). The rule language formula-
tion, along with state representation needed for the infer-
ence process is discussed.An algebraic text-based rule rep-
resentation is presented, as well as the visual representation
with XTT tables. Inference with this structured rulebase is
discussed, with selected elements of the design of a hybrid
inference engine is considered. The future work, including

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

implementation issues as well as possible extensions of the
rule language is provided.

Motivation

Using logics based on attributes is one of the most popular
approaches to define knowledge. Not only it is very intu-
itive, but it follows simple technical way of discussion where
the behavior of physical systems is formalized by providing
the values of system variables. This kind of logic is om-
nipresent in various applications. It constitutes the bases for
construction of relational database tables, attributive deci-
sion tables and trees (K1osgen and Zytkow 2002), attributive
rule-based systems (?) and is often applied to describe state
of dynamic systems and autonomous agents.

However, it is symptomatic that while a number of new
rule-based solutions, such as Jess or Drools, provide new
high-level features, such as Java-integration, network ser-
vices, etc., the rule representation and inference methods
remain essentially the same. The rule languages found in
these tools tend to be logically trivial, and conceptually sim-
ple. They mostly reuse some basic logic solutions, com-
bined with new language features, mainly borrowed from
Java, built on top of classic inference approaches, e.g. Rete.

While these systems integrate well with today business
application stacks, they provide little or no improvement in
the areas of formalized analysis, visual design, or gradual
refinement. This gives motivation to tackle these problems
by introducing novel knowledge representation tools.

Set Attributive Logic (SAL) Development

The very basic idea is that attributes can take atomic or set
values. After (?) it is assumed that an attribute A; is a func-
tion (or partial function) of the form A;: O — D,. Here O
is a set of object and D; is the domain of attribute A;. A
generalized attribute A; is a function (or partial function) of
the form A;: O — 2P+ where 27 is the family of all the
subsets of D;. The atomic formulae of SAL can have the
following three forms: A;(0) = d, A;(0) =t or A;(0) € t,
where d € D is an atomic value from the domain D of the
attribute and ¢t = {d;,ds,...,tx}, t C D is a set of such
values. If the object o is known (or unimportant) its speci-
fication can be skipped; hence we write A; = d, A; = t or
A; € t, for simplicity.

The semantics of A; = d is straightforward — the attribute
takes a single value. The semantics of A; = t is that the
attribute takes all the values of ¢ while the semantics of A; €
t is that it takes one or some of the values of ¢ (the so-called
internal disjunction).

In this paper an improved and extended version of SAL is
presented in brief. For simplicity no object notation is intro-
duced. The formalism is oriented towards Finite Domains
(FD) and its expressive power is increased through intro-
duction of new relational symbols. The semantics is also
clarified. The practical representation and inference issues
both at the logical level and implementation level are tack-
led. The main extension consists of a proposal of extended
set of relational symbols enabling definitions of atomic for-
mulae. The values of attributes can take singular and set
values over Finite Domains (FD).

ALSV(FD)

The basic element of the language of Attribute Logic with
Set Values over Finite Domains (ALSV(FD) for short) are
attribute names and attribute values. Let us consider: A —a
finite set of attribute names, D — a set of possible attribute
values (the domains). Let A = {A;, Ay, ..., A, } be all the
attributes such that their values define the state of the system
under consideration. It is assumed that the overall domain
D is divided into n sets (disjoint or not), D = Dy U Dy U
... U D, where D; is the domain related to attribute A;,
i = 1,2,...,n. Any domain D, is assumed to be a finite
(discrete) set. The set can be ordered, partially ordered, or
unordered; in case of ordered (partially ordered) sets some
modifications of notation is allowed.

As we consider dynamic systems, the values of attributes
can change over time (or state of the system). We consider
both simple attributes of the form A;: T"— D; (i.e. taking a
single value at any instant of time) and generalized ones of
the form A;: T — 2P (i.e. taking a set of values at a time);
here T" denotes the time domain of discourse.

Let A; be an attribute of A and D; the sub-domain related
to it. Let V; denote an arbitrary subset of D; and let d €
D, be a single element of the domain. The legal atomic
formulae of ALSV along with their semantics are presented
in Tab. 1, 2 for simple and general attributes.

More complex formulae can be constructed with conjunc-
tion (A) and disjunction (V); both the symbols have classi-
cal meaning and interpretation. There is no explicit use of
negation. The proposed set of relations is selected for conve-
nience and as such is not completely independent. For exam-
ple, A; = V; can perhaps be defined as A; C V; A A; D V3
but it is much more concise and convenient to use “=" di-
rectly. Various notational conventions extending the basic
notation can be used. For example, in case of domains being
ordered sets, relational symbols such as >, >=, <, =< can
be used with the straightforward meaning.

The semantics of the proposed language is presented be-
low in an informal way. The semantics of A = V' is basically
the same as the one of SAL (?). If V = {di,do,...,dr}
then A = V is equivalent to

AD{di} AAD {2} Ao AAD {di},

| Syntax [Description | Relation|
A; =d | the value is precisely defined eq
A; # d | shorthand for 4; € D; \ {d}. neq
A; € V; | any of the values d € V; satisfies | in
the formula
A; €V; | isashorthand for A; € D; \'V;. | notin
Table 1: Simple attribute formulas syntax
| Syntax | Description | Relation |
A; =V; | equal to V; (and nothing more) eq
A; #V; | different from V; (at at least one el- | neqg
ement)
A; CV; | being a subset of V; subset
A; D'V, | being a superset of V; supset
A~V | having a non-empty intersection | sim
with V; or disjoint to V;
A; 4 V; | having an empty intersection with | notsim
V; (or disjoint to V;)

Table 2: Generalised attribute formulas syntax

i.e. the attribute takes all the values specified with V' (and
nothing more). The semanticsof A C V, A D V and A ~
V is defined as follows: A CV = A =U whereU C V,
i.e. A takes some of the values from V' (and nothing out of
V), ADV = A=W, where V C W, ie. A takes all
of the values from V' (and perhaps some more), and A ~
V=A=X,where VNX # 0, ie. A takes some of the
values from V' (and perhaps some more). As it can be seen,
the semantics of ALSV is defined by means of relaxation of
logic to simple set algebra.

Basic Inference Rules for ALSV(FD)

Since the presented language is an extension of the SAL (?),
its simple and intuitive semantics is consistent with SAL and
clears up some points of it. The summary of the inference
rules for atomic formulae with simple attributes (where an
atomic formula is the logical consequence of another atomic
formula) is presented in Tab. 3.The table is to be read as fol-
lows: if an atomic formula in the leftmost column holds, and
a condition stated in the same row is true, the to appropriate
atomic formula in the topmost row is a logical consequence
of the one from the leftmost column. The inference rules for
atomic formulae with generalized attributes is presented in
Tab. 4.

In Table 3 and Table 4 the conditions are satisfactory ones.
However, it is important to note that in case of the first rows
of the tables (the cases of A = d; and A = V, respectively)

[E [TA=d, [A#d [AcV, TAZYV,

A=d; di =d; di7£dj di €V; dngj

AZd; || _ di =d; Vi=D\ | V; ={di}

{di}

AeVy || Vi =|d; &€V ViCV; VNV, =0
d.

B B AN R TR R e R
{d;} Vi

Table 3: Inference for atomic formulae, simple attributes

[F [A=W] A#%FW JACWJ[ADW][A~W [A4LW |
A=V || V=W VAW VCW [VOW [VAW [VNIW=0
AZV - V=W |W=D _ W =D _
ACV _ VW VW _ W=D VAw =90
ADV _ wcv W=D |[VOW [VNW#0 _
A~V _ VAW=0 | W=D _ V=W _
ALV _ VAW Z0 | W=D _ W=D V=W
Table 4: Inference for atomic formulae, generalized attributes
L ¥ [A=W | ACW [AOW] A~W | attributes can, in general, be modified in the following three
A=V W#V Vew WEZV VAW ZD ways: 1) by an independent, external system, 2) by the in-
AcCV WgVv VAW=0[WgZV [WNV=0 ference process, and 3) as some clock-dependent functions.
i % “i V‘é %/V[; 7 g/ggm‘; = = The first case concerns attributes which represent some pro-
= = cess variables, which are to be incorporated in the inference

Table 5: Inconsistency conditions for atomic formulae pairs

all the conditions are also necessary ones. The interpreta-
tion of the tables is straightforward: if an atomic formula in
the leftmost column in some row ¢ is true, then the atomic
formula in the topmost row in some column j is also true,
provided that the relation indicated on intersection of row ¢
and column j is true. The rules of Table 3 and Table 4 can
be used for checking if preconditions of a formula hold or
verifying subsumption among rules.

For further analysis, e.g. of intersection (overlapping) of
rule preconditions one may be interested if two atoms cannot
simultaneously be true and if so — under what conditions.
For example formula A C V A A C W is inconsistent if ' N
W = (). Table 5 specifies the conditions for inconsistency.

The interpretation of the Table 5 is straightforward: if the
condition specified at the intersection of some row and col-
umn holds, then the atomic formulae labelling this row and
column cannot simultaneously hold. Note however, that this
is a satisfactory condition only.

Table 5 can be used for analysis of determinism of the
system, i.e. whether satisfaction of precondition of a rule
implies that the other rules in the same table cannot be fired.

Rules in ALSV(FD)

ALSV(FD) has been introduced with practical applications
for rule languages in mind. In fact, the primary aim of the
presented language is to extend the notational possibilities
and expressive power of the XTT-based tabular rule-based
systems (?). An important extension consist in allowing for
explicit specification of one of the symbols =,#,€, &, C, D,
~ and ¢ with an argument in the table.

Consider a set of n attributes A = {45, As, ..
Any rule is assumed to be of the form:

(A1 X1 ‘/1) A (Ag X9 ‘/2) N... (An Xp, V;L) — RHS

where oc; is one of the admissible relational symbols in
ALSV(FD), and RHS is the right-hand side of the rule cov-
ering conclusion and perhaps the retract and assert defini-
tions if necessary; for details see (?).

LAY,

State Representation and Inference

When processing information, the current values of at-
tributes form the state of the inference process. The values of

process, but depend only of the environment and external
systems. As such, the variables cannot be directly influenced
by the XTT system. Examples of such variables may be the
external temperature, the age of a client or the set of foreign
languages known by a candidate. Values of such variables
are obtained as a result of some measurement or observation
process. They are assumed to be put into the inference sys-
tem via a blackboard communication method; in fact they
are written directly into the internal memory whenever their
values are obtained or changed.

The second case concerns the values of attributes obtained
at certain stage of reasoning as the result of the operations
performed in RHS of XTT. The new values of the attributes
can be: asserted to global memory (and hence stored and
made available for any components of the system), or kept
as values of internal process variables. The first solution is
offered mostly for permanent changes; before asserting new
values typically and appropriate retract operation is to be
performed so as to keep a consistent state. In this way also
the history (trajectory) of the system can be stored, provided
that each value of an attribute is stored with a temporal in-
dex. The second solution is offered for value passing and
calculations which do not require permanent storage. For
example, if a calculated value is to be passed to some next
XTT component and it is no longer used after, it is not nec-
essary to store it in the global memory.

The State of the System

The current state of the system is considered as a complete
set of values of all the attributes in use at a certain instant
of time. The concept of the state is similar to the one in
dynamic systems and state-machines. The representation of
the state should satisfy the following requirements:

1. the specification is internally consistent,
2. the specification is externally consistent,
3. the specification is complete,

4,
5

. the specification is concise.

the specification is deterministic,

The first postulate says that the specification itself cannot be
inconsistent at the syntactic level. For example, a simple at-
tribute (one taking a single value) cannot take two different
values at the same time. In general, assuming independence

of the attributes and no use of explicit negation, each value
of an attribute should be specified once. The second postu-
late says, that only true knowledge (with respect to the ex-
ternal system) can be specified in state. In other words, facts
that are syntactically correct but false cannot occur in the
state formula. The third postulate says, that all the knowl-
edge true at a certain instant of time should be represented
within the state. The four postulate says that there can be
no disjunctive knowledge specification within the state. Fi-
nally, the fifth postulate says that no unnecessary, dependent
knowledge should be kept in the state. In databases and most
of the knowledge bases this has a practical dimension: only
true facts are represented explicitly.

The current values of all the attributes are specified with
the contents of the knowledge-base (including current sen-
sor readings, measurements, inputs examination, etc.). From
logical point of view it is a formula of the form: (A; =
Sl)/\(AQ = Sg)/\. . /\(An = Sn) where S; = d; (d; € Dy)
for simple attributes and S; = V;, (V; C D;) for complex.

In order to cover realistic cases some explicit notation for
covering unspecified, unknown values is proposed; this is
so to deal with the data containing the NULL values im-
ported from a database. The first case refers to unspecified
value of an attribute as a consequence of inappropriateness.
A formula of the form A = 1 means that the attribute A
takes an empty set of values (no value at all) at the cur-
rent instant of time (or forever) for the object under con-
sideration. For example, the attribute Maiden_Name or
The_Year_of_Last_Pregnancy for a man is not ap-
plicable and hence it takes no value for all men. The second
case refers to a situation that the attribute may be applied
to an object, but it takes no value. This will be denoted
as A = (). For example, the formula Phone_Number=(
means that the considered person has no phone number. The
third case is for covering the NULL values present in rela-
tional databases. A formula of the form A = NULL means
that attribute A takes an unspecified value.

Rule Firing

In order to fire a rule all the precondition facts defining its
LHS must be true within the current state. The verifica-
tion procedure consists in matching these fact against the
state specification. A separate procedure concerns simple
(single-valued) attributes, and a separate one is applied in
case of complex attributes. The following tables provide
a formal background for preconditions matching and rule-
firing procedure: Tab. 6 defines when a precondition of the
form A o d is satisfied with respect to given state, and
Tab. 7 defines the principles for matching precondition de-
fined with set-valued attributes against the state formula.

Representation and Inference with Tables

Knowledge representation with eXtended Tabular Trees
(XTT) incorporates extended attributive table format. Fur-
ther, similar rules are grouped within separated tables, and
the whole system is split into such tables linked by arrows
representing the control strategy. Consider a set of m rules
incorporating the same attributes Ay, Ay, ..., A,. In such

a case the preconditions can be grouped together and form
a regular matrix, forming a table. Every cell in the table
corresponds to a ALSV(FD) formula. The visual table rep-
resentation can be observed in the tool screenshot in Fig. 1.

Having a table with defined rules the execution mecha-
nism searches for ones with satisfied preconditions. This
satisfaction is verified in an algebraic mode, using the de-
pendencies specified in the first row of Table 3 for simple
attributes and the first row of Table 4 for the complex ones.

The rules having all the preconditions satisfied can be
fired. For the following analysis we assume the classical,
sequential model, i.e. the rules are examined in turn in the
top-down order and fired if the preconditions are satisfied.
Various mechanisms can be used to provide a finer inference
control mechanism (?).

In order to avoid repeated checking of preconditions a
propagation mechanism is proposed for satisfaction and fal-
sification of atomic formula within the table. Let ¢(4, j) de-
note the atomic formula related to the cell located in row ¢
and column j. The idea can be summarized as follows:

e once the table is defined it is searched top-down (off-
line) for establishing dependencies between any atomic
cell (7, j) of rule 7 and all the cells c(k, j) (in the same
column) of any rule k, where k > i;

e in case some two cells ¢(, j), c(k, j) satisfy a condition of
logical consequence as specified in Table 3, a positive link
p(i, k,) is established; all the links are kept in memory;

e in case some two cells (7, j), c(k, j) satisfy a condition
of logical inconsistency as specified in Table 4, a nega-
tive link n (i, k, 7) is established; all the links are kept in
memory;

e during execution phase, if a cell (¢, j) is checked and
the related atomic formula is satisfied, the truth value is
propagated for the transitive closure defined with use of
the positive links; the respective atoms are marked true
and do not need to be checked in this turn;

e during execution phase, if a cell ¢(i,j) is checked and
the related atomic formula is true, the false value is prop-
agated for the transitive closure defined with use of the
negative links; the respective atoms are marked false and
the corresponding rules are eliminated from this cycle.

This mechanism saves computational effort corresponding
to repeated precondition checking and saves time in case
some preconditions are logically dependent (one is logical
consequence of the other or they are mutually exclusive).

Rule Analysis Examples

The advantage of tabular rule-based systems defined with
ALSV(FD) is that rule analysis becomes simpler and can be
performed with algebraic tools. As an example consider two
typical cases, e.g. detection of subsumption and overlapping
preconditions which may lead to conflict or indeterminism.
Subsumption: Consider two rules given by two rows of
a table; the rules are of the form introduced previously. for
being some 71 and ¢2. For simplicity we consider that the
RHS;; = RHS;> (Right Hand Side), the conclusions are

[= [A=d; [A#d JAcV; ALV, [A=_TA=T]
A=d d=d; | d#d; | deV; | d¢€V; true false
A=1 false false false false false true
A=10 false false false false true false

A = NULL false false false Jalse false false

Table 6: Inference principles for firing rules, case of single-valued attributes

[= JTA=W]A#FWJ[ACWI][ADW] A~W [AxW JTA=_TA=T]
A=S S=W [SE#W [SCW [SOW [SNW#D [SNW =01 true false
A=1 false false false false false false false true
A=10 W=0] W#0D true W==0 false true true false

A = NULL false false false false false false false false
Table 7: Inference principles for firing rules, case of general attributes

identical. Rule 71 subsumes rule 2 if always when 2 can be
fired 1 can be fired as well. The analysis for subsumption
cane be performed with help of Tab. 3 and 4. In order to
conclude that subsumption holds one is to check that A; oc;
Vis; E Aj o Viyj, for j =1,2,...,n. In case it is true,
rule ¢2 can be eliminated.

Indeterminism and Inconsistency: A first step to dis-
cover indeterminism is two check if the rules can be fired
together i.e. if their preconditions can be satisfied simul-
taneously. The analysis for subsumption can be performed
with help of Table 4. In order to conclude that the precon-
ditions cannot be satisfied at the same time one has to check
that = A; oc; Vi ; A Aj ; Vi1, for at least one value of
j€{1,2,...,n}. Ifitis true, the set of rules is determinis-
tic, i.e at any time during execution only a single rule can be
fired. If not, the pairs (or bigger groups) of rules should be
further analyzed to eliminate potential inconsistency.

Inference Engine Design

The presented rule and inference formalization issues are an
important part of the XTT? inference engine design speci-
fication. XTT? is a redesign of the original XTT (?) using
ALSV(FD) as the formal foundation. The new XTT Pro-
log engine includes the support for the ALSV(FD) logic, but
is also integrated with the C/C++/Java runtime to provide a
flexible runtime solution.

The XTT inference engine, or rule meta-interpreter, also
known as HeaRT (HeKatE RunTime) goals are interpret-
ing XTT logic encoded in the Hekate Meta Representation
(HMR), analyze XTT rules in XTT tables, provide inference
control by interpreting links, manage the attributes by the
Blackboard Architecture, by synchronizing attribute values
between the system and the environment, Extended func-
tions, provide: on-line formal verification with refinement
capabilities, a bridge to the HQed editor, OO bridge to Java
in the MVC pattern (Model-View-Controller), (HeaRT=
Model, Java=View), standalone logic server with TCP.

Several interpreter types are considered. These try to ad-
dress issues such as how to control the inference (an infer-
ence control strategy) both at the level of a single table and
the inter-tabular level. Further, if cycles are necessary, how
many times is the interpreter to repeat a single run. Here
only the simplest one is described. The Single Pass inter-
preter is the simplest scenario: the interpreter is executed

externally by the user, system, etc. input attribute callbacks
provide input facts the inference is run, output attribute val-
ues can be sent by callbacks.

Rule Algebraic Notation (HMR)

The interpreter accepts XTT? rules in the following tex-
tual algebraic representation, Hekate Meta Representation
(HMR). It is to be generated by the design tool (e.g. HQed)
and directly run by HeaRT. Table scheme (logically also rule
prototype), and rule encoding are:

xttscheme: [al,...,an], [hl,...,hm].
xttrule: [Table, Id]l: [cl,...,cn]
then [dl,...,dn], [Table, Id].

HMR provides a human readable XTT2 description.

XTT Communication Issues

The assumptions for system modeling with ALSV rules are:
the system is modeled with the use of attributes (state vari-
ables!), the state is fully described with attribute values,
rule firing can possibly change system state by changing at-
tribute values, rules can execute actions external to the sys-
tem (these actions do not change system state), and the state
can be changed from the outside. So it could be summarized,
that “communication” between the system and the world is
conducted using attributes and their values.

In the proposed Blackboard Architecture attributes are
considered shared resources. The XTT logic system (S) can
access the attribute values in the tables. The values can be
accessed from the outside of the system (environment(E)),
and updated by both the environment and the system simul-
taneously. A simple locking approach is exercised. The ac-
cess and update policy depends on the attribute class consid-
ered: input (S < E), output (S — E), internal (S — S), and
communication (S < E). The actual value modification is
provided by a middle layer of attribute callbacks, predicates
run by the interpreter to pull or push attribute values.

In this approach the communication is a simple issue so
does not require an in-depth discussion. However, the prac-
tical engine integration with other runtime environments on
the architectural level is crucial (see Drools+JBoss).

XTT Design Tool Support

One of the main features of the XTT? method is the com-
pact visual representation. From the designer point of view

File Mode Wiew Types Aftributes Table Connections Execute Tools Help

P I . A s —
0 P d VG | m=) '.-?\ 9\ m o g A& > 2 kg s = a2 » o Q =}
17} noRates [[1->} otherDiscourt (7} othersins | (7} insHistory | (>} otherDiscount |
=1 =0 —» =false = true = otherDiscount
N 10 b (7] contins | 17} nocarsins || (-»} otherbiscaunt R —Taime
Table id 10 - noRates 1 =true =1 [N e —tue
b =true =1 Table @ 66
12} carAge | (-=} carDiscount ¥ - false 23
able id: 11 - contins
M =0 =-20
- -- 12} noSeats | [7}carDiscount
i(: = 5 CarDiscount (21 historicCar | 12} technical | (- carbiscount |
W a2 7 » in {5:7:8:8} — = qa
- = false = false
Table (0. B -6 Tableid 9-9 (-]
4] | (4]¥]
Errors
Error: in table '6' row 4, col 3: Not defined value in argument 1 "otherDiscount”. [=]
Error: in table '9' row 2, col 2: Not defined value in argument 1 "carDiscount”,
€3 Error: in table ‘contins' row 1, col 3: Not defined value in argument 1 "otherDiscount". D

€3 Error: in table ‘contins' row 3, col 3: Not defined value in argument 1 "otherDiscount”.
€3 Error: in table ‘contins' row 4, col 3: Not defined value in argument 1 "otherDiscount”.
1, Warning: in table '1' row 1, col 2: There is no possibility on use connection ", unless this table type is "Initialize".

4

Figure 1: HQed editing session, the XTT rulebase structure with anomalies detected

it needs to be supported by a CASE tool in order to be ef-
fective. The HQed (Kaczor 2008) tool (Fig. 1) uses the
rule prototypes generated in the conceptual design, and
supports the actual visual process of the logical design of
XTT2 tables. It is a cross-platform tool written in C++
and the Qt library Available under the the GNU GPL from
ai.ia.agh.edu.pl/wiki/hekate:hged.

One of the most important editor features is the support
for XTT rulebase quality assurance, provided in several as-
pects: condition specification constraints, structured rule-
base syntax, gradual model refinement, with partial simu-
lation logical rule model quality. The first aspect is provided
by number of editing features providing strict user data veri-
fication. Every attribute value entered into XTT cells (corre-
sponding to the ALSV(FD) formulas) is checked against the
attribute domain. On the other hand the user is hinted during
the editing process, with feasible attribute values.

The rulebase syntax may be checked against anomalies,
e.g. incomplete rule specification, malformed inference
specification, including missing table links. The editor al-
lows for gradual rules refinement, with an online checking
of attribute domains, as well as simple table properties, such
as inference related dead rules. In case of simple tables it is
possible to emulate and visualize the inference process.

However, the main quality feature being developed is a
plugin framework, that allows for integrating Prolog-based
analysis plugins (being part of the inference engine) to check
formal properties of the XTT rule base, including complete-
ness, redundancy, or determinism. Here analysis is per-
formed on the logical level, where the rows of the XTT ta-
bles are interpreted and analyzed as ALSV(FD) formulas.

The output from HQed is a rulebase encoded in HMR,
that can be executed using a Prolog-based inference engine.

Conclusions and Future Work

This paper presents extensions of Set Attributive Logic (?).
In the proposed logic both atomic and set values are allowed
and various relational symbols are used to form atomic for-
mulae. The proposed rule language provides a concise and
elegant tool of significantly higher expressive power than in
case of classical rule systems.

In the paper new inference rules specific for the intro-
duced logic are examined. They constitute a challenge for
efficient precondition matching, so algebraic solutions are
proposed. The original contribution also includes enhanced
state representation and design tool support. Built on the
ALSV(FD) XTT? allows for a compact visual representa-
tion, with the rule inference formally described.

Future work includes practical inference engine imple-
mentation with the plugin framework, integrated on the ar-
chitectural level with the Java runtime.

Warning Some self-citations have been removed, so they
do not appear in the reference list.

References
Connolly, T.; Begg, C.; and Strechan, A. 1999. Database
Systems, A Practical Approach to Design, Implementation,
and Management. Addison-Wesley, 2nd edition.
Giarratano, J. C., and Riley, G. D. 2005. Expert Systems.
Thomson.
Kaczor, K. 2008. Design and implementation of a unified
rule base editor. Master’s thesis, AGH Univerity of Science
and Technology. Supervisor: G. J. Nalepa.
Klosgen, W., and Zytkow, J. M., eds. 2002. Handbook of
Data Mining and Knowledge Discovery. New York: Ox-
ford University Press.
Morgan, T. 2002. Business Rules and Information Systems.
Aligning IT with Business Goals. Boston, MA: Addison
Wesley.
van Harmelen, F.; Lifschitz, V.; and Porter, B., eds. 2007.
Handbook of Knowledge Representation. Elsevier Science.

