
Prolog Hybrid Operators in the Generalized
Rule Programming Model?

Igor Wojnicki1 and Grzegorz J. Nalepa1

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland
gjn@agh.edu.pl, wojnicki@agh.edu.pl

Abstract. This paper describes the so-called Hybrid Operators in Pro-
log – a concept which extends the Generalized Rule Based Programming
Model (GREP). This extension allows a GREP-based application to com-
municate with the environment by providing input/output operations,
user interaction, and process synchronization. Furthermore, it allows for
the integration of such an application with contemporary software tech-
nologies including Prolog based code. The proposed Hybrid Operators
extend GREP as a knowledge-based software development concept.

1 Introduction

Rule-Based Systems (RBS) constitute a powerful and well-known AI tool [1]
for specification of knowledge. They are used in design and implementation of
systems in the domains such as system monitoring and diagnosis, intelligent
control, and decision support (see [2,3,4]). From a point of view of classical
knowledge engineering (KE) a rule-based expert system consists of a knowledge
base and an inference engine. The KE process aims at designing and evaluating
the knowledge base, and implementing the inference engine. In order to design
and implement a RBS in a efficient way, the chosen knowledge representation
method should support the designer introducing a scalable visual representation.
Supporting rulebase modelling remains an essential aspect of the design pro-

cess. The simplest approach consists in writing rules in the low-level RBS lan-
guage, such as one of Jess (www.jessrules.com). More sophisticated are based
on the use of some classic visual rule representations. This is a case of LPA
VisiRule, (www.lpa.co.uk) which uses decision trees. Approaches such as XTT
aim at developing new visual language for visual rule modelling.
When it comes to practical implementation of RBS, a number of options

exist. These include expert systems shells such as CLIPS, or Java-based Jess; and
programming languages. In the classic AI approach Prolog becomes the language
of choice, thanks to its logic-based knowledge representation and processing. The
important factor is, that Prolog semantics is very close to that of RBS.

? The paper is supported by the Hekate Project funded from 2007–2008 resources for
science as a research project.



RBS are found in a wide range of industrial applications in some „classic AI
domains”, e.g. decision support, system diagnosis, or intelligent control. How-
ever, due to some fundamental differences between knowledge and software en-
gineering, the technology did not find applications in the mainstream software
engineering.

2 Generalized Rule Programming with XTT

The XTT (EXtended Tabular Trees) knowledge representation [5], has been
proposed in order to solve some common design, analysis and implementation
problems present in RBS. In this method three important representation levels
has been addressed: visual – the model is represented by a hierarchical structure
of linked extended decision tables, logical – tables correspond to sequences of
extended decision rules, implementation – rules are processed using a Prolog
representation.
On the visual level the model is composed of extended decision tables. A

single table is presented in Fig. 1. The table represents a set of rules, having the
same attributes. A rule can be read as follows:
(A11 ∈ a11) ∧ . . . (A1n ∈ a1n) → retract(X = x1), assert(Y = y1), do(H = h1)
It includes two main extensions compared to classic RBS: 1) non-atomic

attribute values, used both in conditions and decisions, 2) non-monotonic rea-
soning support, with dynamic assert/retract operations in decision part. Every
table row corresponds to a decision rule. Rows are interpreted from top the row
to the bottom one. Tables can be linked in a graph-like structure. A link is
followed when a rule (row) is fired.

A1 An −X +Y H

a11 a1n x1 y1 h1

am1 amn xm ym hm

Fig. 1. A single XTT table.

On the logical level a table corresponds to a number of rules, processed in
a sequence. If a rule is fired and it has a link, the inference engine processes
the rule in another table. The rule is based on an attributive language [4]. It
corresponds to a Horn clause: ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pk ∨ h where p is a literal in
SAL (set attributive logic, see [4]) in a form Ai(o) ∈ t where o ∈ O is a object
referenced in the system, and Ai ∈ A is a selected attribute (property) of this
object, t ⊆ Di is a subset of attribute domain Ai. Rules are interpreted using
a unified knowledge and fact base, that can be dynamically modified during
the inference process using Prolog-like assert/retract operators in rule decision.



Rules are implemented using Prolog-based representation, using terms, which is
a flexible solution (see [6]). However, it requires a dedicated meta-interpreter [7].
This approach has been successfully used to model classic rule-based expert

systems. Considering using XTT for general applications in the field of Software
Engineering, there have been several extensions proposed regarding the base
XTT model. The Generalized Rule Programming model or GREP uses the XTT
knowledge method with certain modifications. The XTT method was aimed at
forward chaining rule-based systems (RBS). In order to be applied to general
programming, it is modified in several aspects. The modifications considered in
GREP are Grouped Attributes, Attribute-Attribute Comparison, Link Labeling,
Not-Defined Operator, Scope Operator, Multiple Rule Firing. Applying these ex-
tensions constitute GREP [8]. All of these extensions have been described in [8].
Here, only some of them, needed for further demonstration of hybrid operators
will be shortly discussed.
Grouped Attributes provide means for putting together a given number of

attributes to express relationships among them and their values. As a result a
complex data structure, called a group, is created which is similar to constructs
present in programming languages (i.e. C structures). A group is expressed as:
Group(Attribute1, Attribute2, . . . , AttributeN). Attributes within a group can
be referenced by their name: Group.Attribute1 or position within the group:
Group/1. An application of Grouped Attributes could be expressing spatial co-
ordinates: Position(X, Y ) where Position is the group name, X and Y are
attribute names.
The Attribute-Attribute Comparison concept introduces a powerful mecha-

nism to the existing XTT comparison model. In addition to comparing an at-
tribute value against a constant (Attribute-Value Comparison) it allows for com-
paring an attribute value against another attribute value. The Attribute-Value
Comparison can be expressed as a condition:

if (Attribute OPERATOR Value) then ...

where OPERATOR is a comparison operator i.e. equal, greater then, less than etc.,
while Attribute-Attribute Comparison is expressed as a condition:

if (Attribute1 OPERATOR Attribute2) then ...

where OPERATOR is a comparison operator or a function in a general case:

if (OPERATOR(Attribute1,...,AttributeN)) then ...

The proposed Not-Defined (N/D) operator checks if a value for a given at-
tribute has been defined. It has a broad application regarding modelling basic
programming structures, i.e. to make a certain rule fired if the XTT is executed
for the first time.

3 Motivation for the GREP Extension

The concept of the Generalized Rule-based Programming (GREP) presented in
[8] provides a coherent rule programming solution for general software design and



implementation. However, at the current stage GREP still lacks features needed
to replace traditional programming languages. The most important problem is
with limited actions/operations in the decision and precondition parts, and in-
put/output operations, including communication with environment.
Actions and operations in the decision and condition parts are limited to us-

ing assignment and comparison operators (assert/retract actions are considered
assignment operations), only simple predefined operators are allowed.
Interaction with the environment of GREP based application is provided by

means of attributes. Such an interface while being sufficient for expert systems
becomes insufficient for general purpose software. Particularly there is no basis
for executing arbitrary code (external processes, calling a function or method)
upon firing a rule. Such an execution would provide an ability to trigger oper-
ations outside the GREP application (i.e. running actuators regarding control
systems). The only outcome, possible now in GREP, is setting an attribute to a
given value.
Similarly conditions are not allowed to spawn any additional inference pro-

cess, i.e. in order to get specific values from arbitrary code (external process,
function or method; reading sensor states for control systems).
There is also an assumption that setting appropriate attribute triggers some

predefined operation, however such operations are not defined by XTTs and
they have to be provided by other means. Similarly comparing an attribute with
some value might trigger certain operations which lead to value generation for
the triggered attribute.
So it can be concluded, that in order to serve as an efficient implementation

tool, GREP in its current form should be extended even more. This extension
consist in the introduction of hybrid operators. Such operators offer an extended
processing capabilities for attributes and their values. The hybrid operators can
serve as generative, restrictive or triggering operations. These are to generate
attribute values, restrict admissible attribute values, or trigger arbitrary code
execution, respectively.

4 Hybrid Operators

GREP assumes that there is only one, single attribute in a column to be modified
by rules or there is a single Grouped Attribute (GA), since the operators are
capable of modifying only a single attribute values. Applying GREP to some
cases (see Section 6) indicated a need for more complex operators working on
multiple attributes at the same time. To introduce such operators certain changes
to the current GREP are necessary. These changes constitute XTTv2 which will
be subsequently referred to as XTT in this paper.
The following extensions, which provide Hybrid Operators functionality, are

proposed: Defined Operators (DOT), and Attribute Sets (ASET).
A Defined Operator is an operator of the following form:

Operator(Attribute1, ..., AttributeN)



Its functionality is defined by other means and it is not covered by XTT. An
operator can be implemented in almost any declarative programming language
such as Prolog, procedural or object oriented as: C/C++, Java, or it can even
correspond to database queries written in SQL. A Hybrid Operator is an interface
between XTT and other programming languages, the targeted languages are:
Prolog, Java and C. This is where the name Hybrid depicts that such an operator
extends XTT with other programming languages and paradigms.
In general, a rule with a DOT is a regular production rule as any other XTT

based one:

IF (Operator(Attribute1,...,AttributeN)) THEN ...

Since, a DOT is not limited to modify only a single attribute value, it should be
indicated which attribute values are to be modified. This indication is provided
by ASETs.
An ASET is a list of attributes whose values are subject to modifications in a

given column. The ASET concept is similar to this of Grouped Attributes (GA) to
some extent. The difference is that a GA defines explicitly a relationship among
a number of attributes while an ASET provides means for modifying value of
more than one attribute at a time. Attributes within an ASET do not have to
be semantically interrelated.
An XTT table with ASET and DOT is presented in Fig. 2. There are two

ASETs: attributes A,B, C and X, Y . In addition to the ASETs there are two
regular attributes D and Z.

table−aset−dot

D

ANY

ANY

X,Y

op4(X,Y)

A,B,C

op1(A,B,C)

op2(A,B,C,D)

op3(X,Y,C)

Z

=1

=2

Fig. 2. Hybrid Operators: Attribute Sets (ASET) and Defined Operators (DOT)

The first column, identified by an ASET: A,B, C, indicates that these three
attributes are subject to modification in this column. Similarly a column identi-
fied by X, Y indicates that X and Y are subject to modifications in this column.
Following the above rules, the operator op2() modifies only A,B, C while D is
accessed by it, but it is not allowed to change D values. Similarly operator op3()
is allowed to change values of X and Y only.
Depending on where a DOT is placed, either in the condition or conclusion

part, values provided by it have different scope. These rules apply to any oper-
ators, not only DOTs. If an operator is placed in the condition part, all value
modifications are visible in the current XTT table only. If an operator is placed
in the conclusion part, all value modifications are applied globally (within the
XTT scope, see [8]), and they are visible in other XTT tables.
There are four modes of operation a DOT can be used in: Restrictive Mode,

Generative Mode, Restrictive-Generative Mode, and Setting Mode. The Restric-



tive Mode narrows number of attribute values and it is indicated as -. The
Generative Mode adds values. It is indicated as +. The Restrictive-Generative
Mode adds or retracts values; indicated as +-. Finally, the Setting Mode sets
attribute values, all previous values are discarded (attributes without + or - are
by default in the Setting Mode).
An example with the above modes indicated is given in Fig. 3. An ASET

in the first column (+A,−B,C) indicates that A can have some new values
asserted, B retracted and C set. An ASET in the third column (X, + − Y )
indicates that X has a new set values, while some Y values are retracted and
some asserted.

D

ANY

ANY op4(X,Y)

op1(A,B,C)

op2(A,B,C,D)

op3(X,Y,C)

Z

=1

=2

table−modes

+A,−B,C X,+−Y

Fig. 3. Hybrid Operators: Modes

Hybrid Operators may be used in different ways. Especially three use cases,
called schemas are considered, these are: Input,Output, andModel. These schemas
depict interaction between XTT based application and its environment, i.e. ex-
ternal procedures (written in C, Java, Prolog etc.) accessible through DOTs. This
interaction is provided on an per attribute basis. The schemas are currently not
indicated in XTT tables, such an indication is subject to further research.
The Input Schema means that an operator reads data from environment

and passes it as attribute values. The Output Schema is similar: an operator
sends values of a given attribute to the environment. Pure interaction with XTT
attributes (no input/output operations) is denoted as the Model Schema.
There are several restrictions regarding these schemas. The Input schema

can be used in condition part, while the Output schema in conclusion part only.
Model schemas can be used both in condition or conclusion parts.
Regardless of the schema: Model, Input, or Output, any operation with a

DOT involved can be: blocking or non-blocking. A blocking operation means
that the DOT blocks upon accessing an attribute i.e. waiting for a value to
be read (Input Schema), write (Output Schema), or set (Model Schema). Such
operations may be also non-blocking, depending on the functionality needed.
The schemas can provide semaphore-like synchronization based on attributes

or event triggered inference i.e. an event unblocking a certain DOT, which spawns
a chain of rules to be processed in turn.
There is a drawback regarding Hybrid Operators. It regards validation of an

XTT based application. While an XTT model can be formally validated, DOTs
cannot be, since they might be created with a non-declarative language (i.e.: C,
Java). Some partial validation is doable if all possible DOT inputs and outputs
are known in the design stage. It is a subject of further research.



5 GREP Model Integration with HOP

The XTT model itself is capable of an advanced rule-based processing. However,
interactions with the environment were not clearly defined. The Hybrid Opera-
tors, introduced here, fill up this gap. An XTT based logic can be integrated with
other components written in Prolog, C or Java. This integration is considered on
an architectural level. It follows the Mode-View-Controller (MVC) pattern [9].
In this case the XTT, together with Prolog based Hybrid Operators, is used to
build the application logic: the model, where-as other parts of the application
are built with some classic procedural or object-oriented languages such C or
Java.

The application logic interfaces with object-oriented or procedural compo-
nents accessible through Hybrid Operators. These components provide means
for interaction with an environment which is user interface and general input-
output operations. These components also make it possible to extend the model
with arbitrary object-oriented code. There are several scenarios possible regard-
ing interactions between the model and the environment. In general they can
be subdivided into two categories providing view and controller functionalities
which are output and input respectively.

An input takes place upon checking conditions required to fire a rule. A con-
dition may require input operations. A state of such a condition is determined
by data from the environment. Such data could be user input, file contents, a
state of an object, a result from a function etc. It is worth pointing out that
the input operation could be blocking or non-blocking providing a basis for syn-
chronization with environment. The input schema act as a controller regarding
MVC.

The output schema takes place if a conclusion regards an output operation.
In such a case, the operation regards general output (i.e. through user interface),
spawning a method or function, setting a variable etc. The conclusion also carries
its state, which is true or false, depending on whether the output operation
succeeded or failed respectively. If the conclusion fails, the rule fails as well. The
output schema acts as the view regarding MVC.

There are several components to integrate to provide a working system. They
are presented in Fig. 4. The application’s logic is given in a declarative way as the
Knowledge Base using XTT. Interfaces with other systems (including Human-
Computer Interaction) are provided in classical sequential manner through Hy-
brid Operators. There is a bridging module between the Knowledge Base and
the sequential Code (C/Java language code): the Sequential Language INterface
(SLIN). It allows communication in both directions. The Knowledge Base can
be extended, new facts or rules added by a stimulus coming through SLIN from
the View/Interface. There are two types of information passed this way: events
generated by the HeaRT (HEkate RunTime) and knowledge generated by the
Code (through Hybrid Operators).



Runtime
C/Java

Code
C/Java

Hardware

SLIN

Inference Engine

HeaRT

View/Interface

Application

Model

Knowledge Base

Fig. 4. System Design

6 HOP Applications Examples

Let us consider two generic programming problems examples: factorial calcula-
tion and tree browsing.
To calculate factorial ofX and store it as a value of attribute Y an XTT tables

given in Fig. 5 are needed. It is an iterative approach. Such a calculation can
be presented in a simpler form with use of a Hybrid Operator, which provides a
factorial function in other programming language, more suitable for this purpose.
The XTT table which calculates a factorial of X and stores the result in Y is
presented in Fig. 6. In addition to the given XTT table, the fact() operator has
to be provided. It can be expressed in Prolog, based on the recursive algorithm,
see Fig. 7. Such an approach provides cleaner design at the XTT level.

S

N/D

Y

=1

X

=1

=0

>1

factorial0

N/D

=X

=1

=1

S

factorial1

>1

=1

Y S

=Y*S =S−1

ANY N/D

Fig. 5. XTT: factorial function

Problems like TSP or browsing a tree structure have well known and pretty
straightforward solutions in Prolog. Assuming that there is a tree structure de-
noted as: tree(Id, Par), where tree.Id is a node identifier and tree.Par is a
parent node identifier.
To find all predecessors of a given node, an XTT table is given in Fig. 8. The

XTT searches the tree represented by a grouped attribute tree/2. Results will
be stored in a grouped attribute out/2 as out(Id, Pre), where out.Id is a node



X

factorial−ho

ANY

Y

fact(X,Y)

Fig. 6. XTT: factorial function, using a Hybrid Operator

fact(0,0).
fact(1,1).
fact(A,B):- A > 1, T is A - 1, fact(T,Z), B is Z * A.

Fig. 7. XTT: factorial Hybrid Operator in Prolog

identifier and out.Pre is its predecessor node. The search process is narrowed
to find predecessors of a node with out.Id = 2 only (see attribute out.Id in the
condition part of the XTT). It is provided by a hybrid operator pred().

The hybrid operator pred() is implemented in Prolog (see Fig. 9). It consists
of two clauses which implement the recursive tree browsing algorithm. The first
argument of tree/3 predicate is to pass the tree structure to browse. Since tree/2
in XTT is a grouped attribute it is perceived by Prolog as a structure.

tree.Id

ANY

out.Id,out.Pre

tree−ho

out.Id

=2

tree.Par

ANY pred(tree(Id,Par),out.Id,out.Pre)

Fig. 8. XTT: Browsing a tree

pred(Tree,Id,Parent):-Tree, Tree=..[_,Id,Parent].
pred(Tree,Id,Parent):-Tree, Tree=..[Pred,Id,X],

OtherTree=..[Pred,_,_],
pred(OtherTree,X,Parent).

Fig. 9. Browsing a tree, a Hybrid Operator in Prolog

The hybrid operator pred() defined in Fig. 9 works in both directions. It is
suitable both for finding predecessors and successors in a tree. The direction
depends on which attribute is bound. In the example (Fig. 8) the bound one
is out.Id. Bounding out.Pre changes the direction, results in search for all suc-
cessors of the given as out.Pre node in the tree. The tree is provided through
the first argument of the hybrid operator. The operator can be used by different
XTT, and works on different tree structures.



7 Concluding Remarks

The Generalized Rule Programming concept, extended with Hybrid Operators
in Prolog becomes a powerful concept for software design. It strongly supports
MVC approach: the model is provided by XTT based application extended with
Prolog based Hybrid Operators; both View and Controller functionality (or in
other words: communication with the environment, including input/output op-
erations) are provided also through Hybrid Operators. These operators can be
implemented in Prolog or (in general case) other procedural or object-oriented
language such as Java or C.
Hybrid Operators extend forward-chaining functionality of XTT with arbi-

trary inference, including Prolog based backward-chaining. They also provide
the basis for an integration with existing software components written in other
procedural or object-oriented languages. The examples showed in this paper in-
dicate that GREP and the Hybrid Operators can be successfully applied as a
Software Engineering approach. It is worth pointing out that this approach is
purely knowledge-based. It constitutes Knowledge based Software Engineering.
The results presented herein should be considered a work in progress. Future

work will be focused on formulating a complete Prolog representation of GREP
extended with HOPs, as well as use cases.

References

1. Negnevitsky, M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, Harlow, England; London; New York (2002) ISBN 0-201-71159-1.

2. Liebowitz, J., ed.: The Handbook of Applied Expert Systems. CRC Press, Boca
Raton (1998)

3. Jackson, P.: Introduction to Expert Systems. 3rd edn. Addison–Wesley (1999) ISBN
0-201-87686-8.

4. Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,
Heidelberg (2006)

5. Nalepa, G.J., Ligęza, A.: A graphical tabular model for rule-based logic program-
ming and verification. Systems Science 31 (2005) 89–95

6. Nalepa, G.J., Ligęza, A.: Prolog-based analysis of tabular rule-based systems with
the xtt approach. In Sutcliffe, G.C.J., Goebel, R.G., eds.: FLAIRS 2006: proceedings
of the 19th international Florida Artificial Intelligence Research Society conference,
AAAI Press (2006) 426–431

7. Covington, M.A., Nute, D., Vellino, A.: Prolog programming in depth. Prentice-Hall
(1996)

8. Nalepa, G.J., Wojnicki, I.: Visual software modelling with extended rule-based
model. In: ENASE 2007: International Working Conference on Evaluation of Novel
Approaches to Software Engineering. (2007)

9. Burbeck, S.: Applications programming in smalltalk-80(tm): How to use model-
view-controller (mvc). Technical report, Department of Computer Science, Univer-
sity of Illinois, Urbana-Champaign (1992)


