

Logic for Computer Science. Knowledge Representation and Reasoning.

Lecture Notes

for

Computer Science Students Faculty EAliIB-IEiT AGH

Antoni Ligęza

Other support material:

http://home.agh.edu.pl/~ligeza
https://ai.ia.agh.edu.pl/pl:dydaktyka:logic:
 start#logic_for_computer_science2020

©Antoni Ligęza: 2020

1

Multi-Valued Logics

In classical Propositional Calculus we have just 2 truth-vales; something can be True or False (technically: 1 and 0):

$$I\colon P\longrightarrow \{\mathbf{T},\mathbf{F}\},\$$

In Multi-Valued Logics there can be 3 (or more) values.

The first 3-valued logic was introduced by Jan Łukasiewicz in 1920.

$$I\colon P\longrightarrow \{0,\frac{1}{2},1\},\$$

The meaning of $\frac{1}{2}$ is unknown; maybe becoming true or false in future.

The truth-tables are based on the following practical formulas:

•
$$I(\neg p) = 1 - I(p)$$
,

- $(p \wedge q) = \min(I(p), I(q)),$
- $I(p \lor q) = \max(I(p), I(q)),$
- $I(p \to q) = \min(1, 1 + I(q) I(p)).$

In Relational Databases/SQL:

- NULL unknown but existing value (date of birth),
- NULL unknown, maybe not existing value (no. of telephone)
- NULL value of an attribute not applicable to an object

AND	TRUE	FALSE	NULL		OR		TRUE	FALSE	NULL
TRUE	TRUE	FALSE	NULL		TRUE	/	TRUE	TRUE	TRUE
FALSE	FALSE	FALSE	FALSE		FALSE		TRUE	FALSE	NULL
NULL	NULL	FALSE	NULL		NULL		TRUE	NULL	NULL
NOT TRUE FALSE NULL									
		TRUE	FALSE	1	RUE	N	\overline{ULL}		

Fuzzy Logic

Let *U* be a classical set (a universe). Any subset *X* of *U* can be defined by the so-called characteristic function – a predicate – m:

$$m: U \to \{0, 1\}$$

so that m(x) = 1 iff $x \in X$.

A Fuzzy Set A defined in U is a pair $A = (U, \mu_A)$, where:

$$\mu_A \colon U \to [0,1]$$

In classical Propositional Calculus we have just 2 truth-vales; something can be True or False (technically: 1 or 0):

$$I\colon P\longrightarrow \{\mathbf{T},\mathbf{F}\},\$$

In Fuzzy Logic there can infinitely many truth values belonging to the interval [0, 1].

The notion of Fuzzy Sets and Fuzzy Logic was introduced by Lotfi Zadeh in 1965.

 $I: P \longrightarrow [0,1],$

The meaning of $I(p) = \alpha$ for $0 < \alpha < 1$ is that p is partially true.

The truth-tables are based on the following practical formulas:

- $I(\neg p) = 1 I(p)$,
- $(p \wedge q) = \min(I(p), I(q))$,
- $I(p \lor q) = \max(I(p), I(q)),$
- $I(p \to q) = \min(1, 1 + I(q) I(p)).$

Temporal Logics

In classical Propositional Calculus we have just 2 truth-vales; something can be True or False (technically: 1 or 0):

$$I\colon P\longrightarrow \{\mathbf{T},\mathbf{F}\},\$$

The logical value of any proposition $p \in P$ remains true or false over all the time of concern. In other words., the truth values of formulas does not change over time.

In dynamic systems the state – and so its description – does change over time.

In the simplest Propositional Temporal Logic there are two temporal operators introduced:

- \Box with the meaning always; all the time, and
- \diamond with the meaning eventually; somewhere in the future.

So the intended meaning is:

- $\Box p$ p holds all over the time (defining safety),
- $\Diamond p$ p will eventually happen (defining liveness).

Possible temporal models:

- continuous vs. discrete time
- intervals vs. instants (time points),
- linear vs. branching time,
- symbolic sequential models vs. real time models.