
Lecture Notes 1

Logic for Computer Science.
Knowledge Representation and Reasoning.

Lecture Notes

for

Computer Science Students
Faculty EAIiIB-IEiT AGH

Antoni Ligęza

Other support material:

http://home.agh.edu.pl/~ligeza

https://ai.ia.agh.edu.pl/pl:dydaktyka:logic:start

c©Antoni Ligęza: 2020

Lecture Notes 2

Propositional Calculus

• Alphabet,

• Syntax,

• Semantics,

• Logical implication (|=) and logical equivalence,

• Logical derivation (`),

• Truth Tables,

• Functional completeness,

• Properties: satisfiability, unsatisfiability, tautologies,...

• Tautology verification,

• Minterms and implicents,

• Maxterms and implicants,

• CNF – Conjunctive Normal Form,

• DNF – Disjunctive Normal Form,

• Transformations preserving logical equivalence,

• minimal and maximal normal forms (CNF, DNF),

• transformation to CNF/DNF,

• Some observations on maxCNF and maxDNF; the Π and Σ notation

shorthand,

• Normal forms of 0 and 1,

• Important tasks of logic...

c©Antoni Ligęza

Lecture Notes 3

The Alphabet of Propositional Calculus

A propositional variable can be assigned some meaning, e.g.:

p
def
= ’Everybody is excited with this logic lecture’.

Definition 1 Propositional Calculus Alphabet:

• P — the set of propositional symbols (propositional variables),

P = {p, q, r, . . . , p1, q1, r1, . . . , p2, q2, r2, . . .},

• ¬ – negation,

• ∧ – conjunction,

• ∨ – disjunction (rather than alternative),

• ⇒ – implication (also: ⇐),

• ⇔ – equivalence (two-side implication),

• two special symbols:

– > – a formula always true (note that it is not the True value),

– ⊥ – a formula always false (note that it is not the False value),

• parentheses.

There are many notations for logical connectives!

See: https://en.wikipedia.org/wiki/Logical_connective

By use of these logical connectives and propositional symbols one builds

more complex logical formulas (formulae) of Propositional Calculus.

Not all expressions built with use of these symbols are Well-Formed For-

mulae (WFF).

Well-Formed Formula must satisfy the syntax rules; see next page.
c©Antoni Ligęza

Lecture Notes 4

Syntax

Definition 2 Definition of legal formulas:

• > i ⊥ are formulas,

• every p ∈ P is a formula,

• if φ, ψ are formulas, then:

– ¬(φ) is a formula (also: ¬(ψ)),

– (φ ∧ ψ) is a formula,

– (φ ∨ ψ) is a formula,

– (φ⇒ ψ) is a formula,

– (φ⇔ ψ) is a formula,

– and nothing else.

Set of formulas = FOR.

Every formula has a parsing tree. There is a grammar defining WFF.

Atomic formulas; atoms — simple propositional symbols; more exactly:

ATOM = P ∪ {>,⊥}

Literals: atoms or their negations;

Positive literals: atomic formulas (with no negation);

Negative literals: negated atomic formulas (¬p).
Pair of complementary literals: {p,¬p}.
Clauses: disjunctions of literals: (p ∨ q ∨ ¬r ∨ s)
Horn clauses: clauses with at most one positive literal: (h ∨ ¬p ∨ ¬q), i.e.:

p ∧ q → h

c©Antoni Ligęza

Lecture Notes 5

Hierarchy of Logical Connectives – Parentheses Elimination

The hierarchy of logical connectives (from top to bottom):

• negation (¬),

• conjunction (∧),

• disjunction (∨),

• implication (⇒),

• equivalence (⇔).

It allows to eliminate parentheses... Look for examples.

Some philosophical questions:

• What in fact does a negation mean?

https://en.wikipedia.org/wiki/Negation

• Finite or infinite worlds? Closed-World Assumption vs. Open World

• Negation-as-Failure vs. Strong Negation

https://en.wikipedia.org/wiki/Stable_model_

semantics#Strong_negation

• Logical negation versus material negation!

• Do we need negation?

c©Antoni Ligęza

Lecture Notes 6

Semantics

Interpretation I maps propositional symbols into T = {T,F}.

Definition 3 Let P be a set of propositional symbols. Interpretations is de-

fined as:

I : P −→ {T,F}, (1)

Notation: I(φ) = T is noted as |=I φ; I(φ) = F is noted as 6|=I φ

Definition 4 The Interpretation I is extended over all formulas φ, ψ, ϕ from

FOR as follows:

• I(>) = T (|=I >),

• I(⊥) = F (6|=I ⊥),

• |=I ¬φ iff 6|=I φ,

• |=I (φ ∧ ψ) iff |=I φ and |=I ψ,

• |=I (φ ∨ ψ) iff |=I φ or |=I ψ,

• |=I (φ⇒ ψ) iff |=I ψ or 6|=I φ,

• |=I (φ⇔ ψ) iff |=I (φ⇒ ψ) and |=I (ψ ⇒ φ).

Definition 5 Equivalence Formulas φ and ψ are logically equivalent iff for

any I:

|=I φ iff |=I ψ. (2)

Definition 6 Logical Implication Formula ψ is logical consequence of φ iff

for any I:

if |=I φ then |=I ψ. (3)

c©Antoni Ligęza

Lecture Notes 7

Truth Tables

φ ¬φ

F T

T F

φ ϕ φ ∧ ϕ

F F F

F T F

T F F

T T T

φ ϕ φ ∨ ϕ

F F F

F T T

T F T

T T T

φ ϕ φ⇒ ϕ

F F T

F T T

T F F

T T T

φ ϕ φ⇔ ϕ

F F T

F T F

T F F

T T T

c©Antoni Ligęza

Lecture Notes 8

An Engineering Notation; Towards Boolean Algebra

Instead of the True and False we often use the 1 and 0 values; this simplifies

notation in some cases. It is also applied in the Boolean Algebra.

The Truth Tables looks as follows:
p ¬p

0 1

1 0

The case of conjunction:

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1

The case of disjunction:

p q p ∨ q

0 0 0

0 1 1

1 0 1

1 1 1

The case of implication:

p q p⇒ q

0 0 1

0 1 1

1 0 0

1 1 1

c©Antoni Ligęza

Lecture Notes 9

Tabular Definitions of Logical Connectives !?! !?!

φ ψ ¬φ φ ∧ ψ φ ∨ ψ φ⇒ ψ φ⇔ ψ

true true false true true true true

true false false false true false false

false true true false true true false

false false true false false true true

Semantics through equivalent transformation:

• φ⇒ ψ ≡ ¬φ ∨ ψ,

• φ⇔ ψ ≡ (φ⇒ ψ) ∧ (φ⇐ ψ),

• φ|ψ ≡ ¬(φ ∧ ψ) –Sheffer function or NAND; also noted as φ ∧ ψ,

• φ ↓ ψ ≡ ¬(φ ∨ ψ) – Pierce function or NOR; other notation φ ∨ ψ,

• φ
⊕

ψ ≡ (¬φ ∧ ψ) ∨ (φ ∧ ¬ψ) — EX-OR,

But there are many other functions possible...

For n arguments there are as many as 22
n functions, so for n = 2 there is 16

different functions.

Try to justify this statement.

Try to find a systematic way to define all the functions of two arguments.

c©Antoni Ligęza

Lecture Notes 10

Functional Completeness !?! !?!

Definition 7 A Set of Functions is functionally complete if it allows to ex-

press any logical function.

Some examples:

AND, OR, NOT:

{¬,∧,∨}

AND, NOT:

{¬,∧}

OR, NOT:

{¬,∨}

IMPLICATION, NOT:

{¬,⇒}

NAND:

{|}

NOR:

{↓}

Definition 8 A functionally complete set of functions is minimal — if it can-

not be further reduced without violating functional completeness.

Is the implication itself a functionally complete set? But it can be: how to

solve this problem?

For convenience, redundant systems are in use.

c©Antoni Ligęza

Lecture Notes 11

Properties of Formulas !?! !?!

A formula φ may be:

true/satisfied — for interpretation I, |=I φ,

false/unsatisfied — for interpretation I, 6|=I φ,

satisfiable — if there exists an interpretation I such that |=I φ,

falsifiable/may be false — if there exists an interpretation I, 6|=I φ,

tautology/valid — if for any interpretation I, |=I φ; we write:

|= φ

always false — if for any interpretation I:

6|= φ

What are the mutual relationships – if any – between the formulas satisfying

the following definitions?

• formula Ψ is a logical consequence of formula Φ, to be denoted as

Φ |= Ψ iff for any interpretation I satisfying Φ, I satisfies also Ψ;

• formula Ψ is derivable from formula Φ, to be denoted as Φ ` Ψ iff there

exists a sequence of (valid) inference rules transforming Φ into Φ;

• Such a derivation is called a linear derivation;

• a formula can be derived from a set ∆ of formulas (the axioms; the

Knowledge Base); in this case we often present the derivation in a

form of inversed tree.
c©Antoni Ligęza

Lecture Notes 12

Most important equivalent transformations

• ¬¬φ ≡ φ — double negation elimination,

• φ ∧ ψ ≡ ψ ∧ φ — conjunction alternation,

• φ ∨ ψ ≡ ψ ∨ φ — disjunction alternation,

• (φ ∧ ϕ) ∧ ψ ≡ φ ∧ (ϕ ∧ ψ) — commutativity,

• (φ ∨ ϕ) ∨ ψ ≡ φ ∨ (ϕ ∨ ψ) — commutativity,

• (φ ∨ ϕ) ∧ ψ ≡ (φ ∧ ψ) ∨ (ϕ ∧ ψ) — distributive law,

• (φ ∧ ϕ) ∨ ψ ≡ (φ ∨ ψ) ∧ (ϕ ∨ ψ) — distributive law,

• φ ∧ φ ≡ φ — idempotency,

• φ ∨ φ ≡ φ — idempotency,

• φ ∧ ⊥ ≡ ⊥, φ ∧ > ≡ φ — identity,

• φ ∨ ⊥ ≡ φ, φ ∨ > ≡ >— identity,

• φ ∨ ¬φ ≡ >— tertium non datur ; excluded middle,

• φ ∧ ¬φ ≡ ⊥— falsification,

• ¬(φ ∧ ψ) ≡ ¬(φ) ∨ ¬(ψ) — De Morgan rule,

• ¬(φ ∨ ψ) ≡ ¬(φ) ∧ ¬(ψ) — De Morgan rule,

• φ⇒ ψ ≡ ¬ψ ⇒ ¬φ — contraposition,

• φ⇒ ψ ≡ ¬φ ∨ ψ — implication elimination.

c©Antoni Ligęza

Lecture Notes 13

Some basic relationships between implications !?! !?!

Simple (direct) statement:

p⇒ q

The Inverse Statement (causality analysis):

q ⇒ p

The Opposite/Contrary Statement(building exclusive rules):

¬p⇒ ¬q

The Contradictive Statement (proof by contradiction)

¬q ⇒ ¬p

The Square of Logical Statements:

p⇒ q

¬p⇒ ¬q

q ⇒ p

¬q ⇒ ¬p

-

?

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SwS
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
So

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�7�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�/

Logical equivalence

Lecture Notes 14

See also: https://en.wikipedia.org/wiki/Square_of_

opposition

c©Antoni Ligęza

Lecture Notes 15

Example: Tautology Verification

φ = ((p⇒ r) ∧ (q ⇒ r))⇔ ((p ∨ q)⇒ r)

There are exactly 23 possible interpretations; we enumerate them in a

consecutive way.

N p q r p⇒ r q ⇒ r (p⇒ r) ∧ (q ⇒ r) (p ∨ q)⇒ r Φ

0 0 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1 1
2 0 1 0 1 0 0 0 1
3 0 1 1 1 1 1 1 1
4 1 0 0 0 1 0 0 1
5 1 0 1 1 1 1 1 1
6 1 1 0 0 0 0 0 1
7 1 1 1 1 1 1 1 1

Other possibility — through equivalence preserving transformations:

φ ≡ ((¬p ∨ r) ∧ (¬q ∨ r))⇔ (¬(p ∨ q) ∨ r).

φ ≡ ((¬p ∧ ¬q) ∨ r)⇔ (¬(p ∨ q) ∨ r).

φ ≡ (¬(p ∨ q) ∨ r)⇔ (¬(p ∨ q) ∨ r).

Let us put: ψ = (¬(p ∨ q) ∨ r); so we see:

φ ≡ ψ ⇔ ψ,

What about the following examples? Logical equivalence (≡)or logical im-

plication (|=)? If so, which way? Try your intuitions first!

φ = ((p⇒ r) ∧ (q ⇒ r))⇔ ((p ∧ q)⇒ r)

φ = ((p⇒ r) ∨ (q ⇒ r))⇔ ((p ∨ q)⇒ r)

c©Antoni Ligęza

Lecture Notes 16

Example: Logical Consequence Verification (EX-LCV16)

(p⇒ q) ∧ (r ⇒ s)

(p ∨ r)⇒ (q ∨ s)
Put:

φ = (p⇒ q) ∧ (r ⇒ s)

and

ϕ = (p ∨ r)⇒ (q ∨ s),

Now, check if:

φ |= ϕ. (4)

N p q r s p⇒ q r ⇒ s (p⇒ q) ∧ (r ⇒ s) p ∨ r q ∨ s (p ∨ r)⇒ (q ∨ s)

0 0 0 0 0 1 1 1 0 0 1
1 0 0 0 1 1 1 1 0 1 1
2 0 0 1 0 1 0 0 1 0 0
3 0 0 1 1 1 1 1 1 1 1
4 0 1 0 0 1 1 1 0 1 1
5 0 1 0 1 1 1 1 0 1 1
6 0 1 1 0 1 0 0 1 1 1
7 0 1 1 1 1 1 1 1 1 1
8 1 0 0 0 0 1 0 1 0 0
9 1 0 0 1 0 1 0 1 1 1
10 1 0 1 0 0 0 0 1 0 0
11 1 0 1 1 0 1 0 1 1 1
12 1 1 0 0 1 1 1 1 1 1
13 1 1 0 1 1 1 1 1 1 1
14 1 1 1 0 1 0 0 1 1 1
15 1 1 1 1 1 1 1 1 1 1

From analysis of columns 8 (φ) and 11 (ϕ) the logical consequence is con-

firmed (but not equivalence; see row enumerated as: 6, 9, 11 and 14).

c©Antoni Ligęza

Lecture Notes 17

Minterms

Definition 9 Literal A literal is an atomic formula p or its negation ¬p.

Definition 10 Let q1, q2, . . . qn are literals:

φ = q1 ∧ q2 ∧ . . . ∧ qn

is a minterm, simple conjunction or product.

Lemma 1 Minterm is satifiable iff it does not contain a pair of complemen-

tary literals.

Lemma 2 Minterm is unsatisfiable iff it contains a pair of complementary

literals.

Notation:

φ = q1 ∧ q2 ∧ . . . ∧ qn

or

φ = q1q2 . . . qn

or a set of literals of a minterm φ

[φ] = {q1, q2, . . . qn}

Definition 11 Minterm φ subsumes minterm ψ iff [φ] ⊆ [ψ].

Lemma 3 Let φ and ψ are any minterms; then :

ψ |= φ iff [φ] ⊆ [ψ].

Think of conjunction as a constraint; a longer conjunction is a stronger con-

straint, since more literals must be satisfied!

c©Antoni Ligęza

Lecture Notes 18

Maxterms

Definition 12 Let q1, q2, . . . qn are literals; then:

φ = q1 ∨ q2 ∨ . . . ∨ qn

is a maxterm, simple disjunction or a clause.

Lemma 4 Maxterm is falsifiable iff it does not contain a pair of complemen-

tary literals.

Lemma 5 Maxterm is a tautology iff it contains a pair of complimentary

literals.

Definition 13 Maxterm ψ subsumes maxterm φ iff

[ψ] ⊆ [φ]

Lemma 6 Let φ and ψ are any maxterms; then:

ψ |= φ iff [ψ] ⊆ [φ].

Think of disjunction as a constraint; a longer disjunction is a weaker con-

straint since more literals are allowed to be satisfied! Let us consider a

clause:

ψ = ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pk ∨ h1 ∨ h2 ∨ . . . ∨ hm

After applying the de Morgan rule:

¬(p1 ∧ p2 ∧ . . . ∧ pk) ∨ (h1 ∨ h2 ∨ . . . ∨ hm)

This can be put as:

p1 ∧ p2 ∧ . . . ∧ pk ⇒ h1 ∨ h2 ∨ . . . ∨ hm

Lecture Notes 19

Definition 14 A clause of the form:

ψ = ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pk ∨ h

is called a Horn Clause.

Alternative notations:

p1 ∧ p2 ∧ . . . ∧ pk ⇒ h.

In PROLOG or in DATALOG:

h : −p1, p2, . . . , pk.

also:

h :- p_1, p_2,..., p_k.

h if p_1 and p_2 and ... and p_k.

Three forms of Horn clauses:

• facts,

• full clauses,

• constraints/calls.

Important intutions (EX-LCV16, the rightmost column):

• minterms define the 1-s of the table EX-LCV16; there are 13 of them,

• maxterms define the 0-s of the table EX-LCV16; there are only 3 of

them.

But how do they look like? How to join them in order to define the formula?
c©Antoni Ligęza

Lecture Notes 20

CNF — Conjunctive Normal Form !?! !?!

Definition 15 Formula Ψ is in Conjunctive Normal Form (CNF; also called:

Conjunction of Clauses, Product of Sums) iff

Ψ = ψ1 ∧ ψ2 ∧ . . . ∧ ψn

where ψ1, ψ2, . . . , ψn are clauses. Notation: [Ψ] = {ψ1, ψ2, . . . , ψn}.

Examples:

Which of the following are in CNF:

1. (p ∨ g ∨ ¬r) ∧ (p ∨ r) ∧ ¬r

2. ((p ∧ q) ∨ ¬r) ∧ (p ∨ r) ∧ ¬r

3. ¬(p ∨ q) ∧ (p ∨ r) ∧ ¬r

4. (M −→ I) ∧ (¬M −→ (¬I ∧ L)) ∧ ((I ∨ L) −→ H) ∧ (H −→ G)

5. (¬M ∨ I) ∧ (M ∨ ¬I) ∧ (M ∨ L) ∧ (¬I ∨H) ∧ (¬L ∨H) ∧ (¬H ∨G)

Definition 16 Implicent of a CNF formula — a clause, such that if it is false

then the respective formula is also false.

An implicent falisfies a CNF formula. Must it be equal to some of the clauses

of the considered formula in CNF?

Definition 17 A formula is in maximal CNF form (canonical CNF form) iff it

is composed of all full/maximal clauses:

maxCNF (Ψ) = ψ1 ∧ ψ2 ∧ . . . ∧ ψn

all ψ1, ψ2, . . . , ψn contain all propositional symbols in use.

Lecture Notes 21

Definition 18 Formula

Ψ = ψ1 ∧ ψ2 ∧ . . . ∧ ψn

in CNF is minimal iff it cannot be reduced without violating logical equiva-

lence.

CNF — appropriate for inconsistency checking. But also basic for SAT!

The always false formula ⊥ of n propositional variables can be represented

in maximal CNF in a unique way and it consists of 2n different clauses, each

of n propositional symbols (negated or not), e.g.:

⊥ = pqr ∧ pqr̄ ∧ pq̄r ∧ pq̄r̄ ∧ p̄qr ∧ p̄qr̄ ∧ p̄q̄r ∧ p̄q̄r̄ (CNF)

Why the formula is always false?

This formula is also called the normal form of 0.

Some observations on CNF:

Important intuition: A maxCNF covers 1:1 all the 0-s in the truth table (e.g.

EX-LCV16). Write all the 3 maxterms/clauses just looking at the table – as

an example...

A CNF can contain single literals as components; this can be explored as

the single literal clause/unit preference strategy in SAT and Resolution The-

orem Proving:

p ∧ (p ∨ q) ∧ (¬p ∨ q ∨ r)

Weaker components (clauses) in CNF can be absorbed — this leads to

simplification of the CNF

p ≡ p ∧ (p ∨ q)

Clauses different in one position — defined by complementary literals can

be resolved (RR):

(p ∨ q) ∧ (p ∨ ¬q) ≡ p

Lecture Notes 22

A CNF containing complementary literals as unit clauses is immediately

false:

p ∧ (q ∨ ¬s) ∧ ¬p ≡ ⊥

c©Antoni Ligęza

Lecture Notes 23

DNF — Disjunctive Normal Form !?! !?!

Definition 19 Formula Φ is in Disjunctive Normal Form (DNF; also called:

Disjunction of Minterms, Sum of Products) iff

Φ = φ1 ∨ φ2 ∨ . . . ∨ φn

where φ1, φ2, . . . , φn are any minterms. Notation: [Φ] = {φ1, φ2, . . . , φn}.

Example:

Which of the following are in DNF:

1. (p ∧ q) ∨ ((p ∨ ¬q) ∧ (¬p ∨ ¬q)))

2. (p ∧ q) ∨ ((p ∨ q) ∨ ¬(p ∧ q)))

3. (p ∧ q) ∨ ((p ∧ ¬q) ∨ (¬p ∧ ¬q)))

4. (p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q)

5. Try to find the DNF of the CNF No. 5 – example from page 20...

Definition 20 Implicant of a DNF formula — a minterm, such that if it is

true, then the respective formula is also true.

An implicant validates a DNF formula. Must it be equal to some of the

components of the formula?

Definition 21 A maximal DNF form (canonical DNF form) is any formula

containing all the possible minterms:

maxDNF (Φ) = φ1 ∨ φ2 ∨ . . . ∨ φn

where all the minterms φ1∨φ2∨. . .∨φn are composed of all the propositional

symbols in use.

Lecture Notes 24

Definition 22 Formula

Φ = φ1 ∨ φ2 ∨ . . . ∨ φn

in DNF is minimal iff it cannot be reduced without violating logical equiva-

lency.

DNF — is appropriate for checking satisfiability.

The formula always true> containing n propositional variables can be trans-

formed to maximal DNF form in a unique way and it is composed of 2n

different products, each of them of n variables (negated or not), e.g.:

> = pqr ∨ pqr̄ ∨ pq̄r ∨ pq̄r̄ ∨ p̄qr ∨ p̄qr̄ ∨ p̄q̄r ∨ p̄q̄r̄ (DNF)

Why the formula is always true? This formula is also called the normal form

of 1.

Some observations on DNF:

Important intuition: A maxDNF covers 1:1 all the 1-s in the truth table (e.g.

EX-LCV16). Write all the 13 full minterms just looking at the table – as en

example...

A DNF can contain single literals as components; this can be explored in the

single literal/unit preference strategy in Dual Resolution Theorem Proving

and looking for falsifying interpretations:

p ∨ (p ∧ q) ∨ (¬p ∧ q ∧ r)

Stronger components (minterms) in CNF can be absorbed — this leads to

simplification of the DNF

p ≡ p ∨ (p ∧ q)

Lecture Notes 25

Minterms different in one position — defined by complementary literals can

be resolved (Dual RR):

(p ∧ q) ∨ (p ∧ ¬q) ≡ p

A DNF containing complementary literals as unit minterms is immediately

true:

p ∨ (q ∧ ¬s) ∨ ¬p ≡ >

c©Antoni Ligęza

Lecture Notes 26

Transformation to CNF/DNF

1. Φ⇔ Ψ ≡ (Φ⇒ Ψ) ∧ (Ψ⇒ Φ) – elimination of equivalence,

2. Φ⇒ Ψ ≡ ¬Φ ∨Ψ – elimination of implication,

3. ¬(¬Φ) ≡ Φ – elimination of double negations,

4. ¬(Φ ∨Ψ) ≡ ¬Φ ∧ ¬Ψ – De Morgan’s rule,

5. ¬(Φ ∧Ψ) ≡ ¬Φ ∨ ¬Ψ – De Morgan’s rule,

6. Φ ∨ (Ψ ∧Υ) ≡ (Φ ∨Ψ) ∧ (Φ ∨Υ) – distributivity rule; towards CNF,

7. Φ ∧ (Ψ ∨Υ) ≡ (Φ ∧Ψ) ∨ (Φ ∧Υ) – distributivity rule; towards DNF.

Example:

(p ∧ (p⇒ q))⇒ q ≡ ¬(p ∧ (p⇒ q)) ∨ q ≡
¬(p ∧ (¬p ∨ q)) ∨ q ≡ (¬p ∨ ¬(¬p ∨ q)) ∨ q ≡
(¬p ∨ (p ∧ ¬q)) ∨ q ≡ ¬p ∨ (p ∧ ¬q) ∨ q ≡

(¬p ∨ p) ∧ (¬p ∨ ¬q) ∨ q ≡ ¬p ∨ ¬q ∨ q ≡ ¬p ∨ > ≡ >.

Example:

Transforming CNF to DNF:

• φ = ((p ∨ q) ∧ (p ∨ r) ∧ (q ∨ s) ∧ (r ∨ s)), ψ = ((p ∧ s) ∨ (q ∧ r))

• φ = ((p ∨ q) ∧ (q ∨ r) ∧ (r ∨ p)), ψ = ((p ∧ q) ∨ (q ∧ r) ∨ (r ∧ p))

• φ = ((p∨q∨r)∧(q∨r∨s)∧(r∨s∨p)) ψ = ((p∧q)∨(p∧s)∨(q∧s)∨r).

c©Antoni Ligęza

Lecture Notes 27

Example EX-LCV16 continued: Comparing DNF

Let us reconsider:

φ = (p⇒ q) ∧ (r ⇒ s),

ϕ = (p ∨ r)⇒ (q ∨ s).

We check for logical implication:

φ |= ϕ.

Transform φ to DNF:

φ = (p⇒ q) ∧ (r ⇒ s) = (¬p ∨ q) ∧ (¬r ∨ s) =

= (¬p ∧ ¬r) ∨ (¬p ∧ s) ∨ (q ∧ ¬r) ∨ (q ∧ s).

and next to its maxDNF form:

maxDNF (φ) = (¬p ∧ ¬q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ ¬q ∧ ¬r ∧ s) ∨ (¬p ∧ ¬q ∧ r ∧ s)∨

(¬p ∧ q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ q ∧ ¬r ∧ s) ∨ (¬p ∧ q ∧ r ∧ s)∨

(p ∧ q ∧ ¬r ∧ ¬s) ∨ (p ∧ q ∧ ¬r ∧ s) ∨ (p ∧ q ∧ r ∧ s).

Transform ϕ to DNF:

ϕ = (p ∨ r)⇒ (q ∨ s) = ¬(p ∨ r) ∨ q ∨ s = (¬p ∧ ¬r) ∨ q ∨ s =

= (¬p ∧ ¬r) ∨ q ∨ s.

and next to its maxDNF form:

maxDNF (ϕ) = (¬p ∧ ¬q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ ¬q ∧ ¬r ∧ s) ∨ (¬p ∧ ¬q ∧ r ∧ s)∨

(¬p ∧ q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ q ∧ ¬r ∧ s) ∨ (¬p ∧ q ∧ r ∧ s)∨

(¬p ∧ q ∧ r ∧ ¬s) ∨ (p ∧ q ∧ ¬r ∧ ¬s) ∨ (p ∧ q ∧ ¬r ∧ s)∨

(p ∧ q ∧ r ∧ s) ∨ (p ∧ q ∧ r ∧ ¬s) ∨ (p ∧ ¬q ∧ ¬r ∧ s)∨

(p ∧ ¬q ∧ r ∧ s).

Lecture Notes 28

and so we have all the 9 full minterms covering all the 1-s of column φ and all

the 13 full minterms covering all the 1-s columnn ϕ ofthe EX-LCV16 table;

check them!

Further on, it can be seen that:

[maxDNF (φ)] ⊆ [maxDNF (ϕ)],

Could it be checked earlier - without generating the maxDNF forms?

Important: short Σ notation (i.e the sum of products): Note that taking into

account the enumeration of the minterms in the leftmost column of the EX-

LCV16, the φ and ϕ formulas can be represented as the sums of products

in the following form:

maxDNF (φ) = Σ(0, 1, 3, 4, 5, 7, 12, 13, 15)

and

maxDNF (ϕ) = Σ(0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15)

In this shorthand notation it is well-visible that in fact maxDNF (ϕ) covers

maxDNF (φ).

c©Antoni Ligęza

Lecture Notes 29

Example EX-LCV16 continued: Comparing CNF

Let us reconsider:

φ = (p⇒ q) ∧ (r ⇒ s),

ϕ = (p ∨ r)⇒ (q ∨ s).

We check for logical implication:

φ |= ϕ.

Transform φ to CNF:

φ = (p⇒ q) ∧ (r ⇒ s) = (¬p ∨ q) ∧ (¬r ∨ s).

and next to its maxCNF form:

maxCNF (φ) = (p ∨ q ∨ ¬r ∨ s) ∧ (p ∨ ¬q ∨ ¬r ∨ s)∧

(¬p ∨ q ∨ r ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s)∧

(¬p ∨ q ∨ ¬r ∨ s) ∧ (¬p ∨ q ∨ ¬r ∨ ¬s)∧

(¬p ∨ ¬q ∨ ¬r ∨ s).

Transform ϕ to CNF:

ϕ = (p ∨ r)⇒ (q ∨ s) = ¬(p ∨ r) ∨ q ∨ s = (¬p ∧ ¬r) ∨ q ∨ s =

= (¬p ∨ q ∨ s) ∧ (¬r ∨ q ∨ s).

and next to its maxCNF form:

maxCNF (ϕ) = (p ∨ q ∨ ¬r ∨ s)∧

(¬p ∨ q ∨ r ∨ s)∧

(¬p ∨ q ∨ ¬r ∨ s) ∧ .

and so we have 7 full maxterms covering all the 0-s of the φ column and 3

full maxterms covering all the 0-s of the ϕ column of the EX-LCV16 table;

check them!

Lecture Notes 30

Further on, it can be seen that:

[maxCNF (ϕ)] ⊆ [maxCNF (φ)],

Could it be checked earlier - without generating the maxCNF forms?

Important: short Π notation: Note that taking into account the enumera-

tion of the maxterms in the leftmost column the φ and ϕ formulas can be

represented as the product of sums in the following form:

maxCNF (φ) = Π(2, 6, 8, 9, 10, 11, 14)

and

maxCNF (ϕ) = Π(2, 8, 10)

Can you see the relationship between the Σ and the Π representation of the

respective formulas?

c©Antoni Ligęza

Lecture Notes 31

Maximal CNF and DNF Forms – Two Observations

Let φ and ψ be two propositional formulas.

We have:

Lemma 7 1

φ |= ψ iff [maxDNF (φ)] ⊆ [maxDNF (ψ)]

For intuition, all the 1-s of φ are covered by the 1-s of ψ.

Also:

Lemma 8 2

φ |= ψ iff [maxCNF (ψ)] ⊆ [maxDNF (φ)]

For intuition, all the 0-s of ψ are covered by the 0-s of φ.

Conclusions:

• Two propositional formulas φ and ψ are logically equivalent iff their

maximal CNF forms are identical (up to the order of components).

• Two propositional formulas φ and ψ are logically equivalent iff their

maximal DNF forms are identical (up to the order of components).

c©Antoni Ligęza
1Corrected w.r.t former edition
2Corrected w.r.t former edition

Lecture Notes 32

Logic for KRR – Tasks and Tools

• Theorem Proving – Verification of Logical Consequence:

∆ |= H;

• Automated Inference – Derivation:

∆ ` H;

• SAT (checking for models) – satisfiability:

|=I H;

• un-SAT verification – unsatisfiability:

6|=I H for any interpretation I;

• Tautology verification (completeness):

|= H

• valid inference rules – checking:

(∆ ` H) −→ (∆ |= H)

• complete inference rules – checking:

(∆ |= H) −→ (∆ ` H)

• finding minimal forms: CNF and DNF.

Question: what are the areas of application of CNF vs. DNF?

Why and when CNF vs. DNF?
c©Antoni Ligęza

