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Inference and Theorem Proving in Propositional Calculus

• Tasks and Models of Automated Inference,

• Theorem Proving models,

• Some important Inference Rules,

• Theorems of Deduction: 1 and 2,

• Models of Theorem Proving,

• Examples of Proofs,

• The Resolution Method,

• The Dual Resolution Method,

• Logical Derivation,

• The Semantic Tableau Method,

• Constructive Theorem Proving: The Fitch System,

• Example: The Unicorn,

• Looking for Models: Towards SAT.
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Logic for KRR — Tasks and Tools

• Theorem Proving — Verification of Logical Consequence:

∆ |= H;

• Method of Theorem Proving: Automated Inference —- Derivation:

∆ ` H;

• SAT (checking for models) — satisfiability:

|=I H (if such I exists);

• un-SAT verification — unsatisfiability:

6|=I H (for any I);

• Tautology verification (completeness):

|= H

• Unsatisfiability verification

6|= H

Two principal issues:

• valid inference rules — checking:

(∆ ` H) −→ (∆ |= H)

• complete inference rules — checking:

(∆ |= H) −→ (∆ ` H)
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Two Possible Fundamental Approaches:

Checking of Interpretations

versus

Logical Inference

Two basic approaches – reasoning paradigms:

• systematic evaluation of possible interpretations — the 0-1 method;

problem — combinatorial explosion; for n propositional variables we

have 2n interpretations!

• logical inference — derivation — with rules preserving logical conse-

quence.

Notation: formula H (a Hypothesis) is derivable from ∆ (a Knowledge Base;

a set of domain axioms):

∆ ` H

This means that there exists a sequence of applications of inference rules,

such that H is mechanically derived from ∆.

Two principal issues in logical knowledge-based systems:

∆ ` H versus ∆ |= H

i.e.

• is the derived formula valid?

• can any valid formula be derived?
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An example derivation - for intuition

Just for intuition, let us consider an example of constructive proof by linear

derivation:

φ = (p⇒ q) ∧ (r ⇒ s),

ϕ = (p ∧ r)⇒ (q ∧ s).

This time we perform derivation of ϕ from φ:

φ ` ϕ

A rough outline of derivation steps:

1. p⇒ q by assumption;

2. r ⇒ s by assumption;

3. p ∧ r we introduce an assumption;

4. p elimination of conjunction from (3);

5. q Modus Ponens (1) and (4);

6. r elimination of conjunction from (3; )

7. s Modus Ponens (2) and (6);

8. q ∧ s conjunction introduction from (5) and (7);

9. (p ∧ r) ` (q ∧ s) the derivation based on assumption (3);

10. (p ∧ r)⇒ (q ∧ s) implication introduction based on (9)

Obviously, there is also:

φ |= ϕ

But why?
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Some more important inference rules !?! !?!

• α

α ∨ β
— Disjunction Introduction,

• α, β

α ∧ β
— Conjunction Introduction,

• α ∧ β
α

— Conjunction Elimination,

• α, α⇒ β

β
— Modus Ponens (modus ponendo ponens); implication

elimination (EI),

• α⇒ β, ¬β
¬α

— Modus Tollens (modus tollendo tollens),

• α ∨ β, ¬α
β

— Modus Tollendo Ponens,

• α
⊕

β, α

¬β
— Modus Ponendo Tollens,

• α⇒ β, β ⇒ γ

α⇒ γ
— Transitivity Rule,

• α ∨ γ, ¬γ ∨ β
α ∨ β

— Resolution Rule,

• α ∧ γ; ¬γ ∧ β
α ∧ β

— Dual Resolution Rule; (backward) dual resolution

(works backwards); also termed consolution,

• α⇒ β, γ ⇒ δ

(α ∨ γ)⇒ (β ∨ δ)
— Constructive Dilemma I,

• α⇒ β, γ ⇒ δ

(α ∧ γ)⇒ (β ∧ δ)
— Constructive Dilemma II.
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The Deduction Theorems

Theorem 1 Let ∆1,∆2, . . .∆n and Ω are logical formulas. Ω is their logical

consequence iff ∆1 ∧∆2 ∧ . . .∆n ⇒ Ω is a tautology.

Theorem 2 Let ∆1,∆2, . . .∆n and Ω are logical formulas. Ω is their logical

consequence iff ∆1 ∧∆2 ∧ . . .∆n ∧¬Ω is invalid (false under any interpreta-

tion).

Theorem proving: having ∆1,∆2, . . .∆n assumed to be true show that so is

Ω. Hence:

∆1 ∧∆2 ∧ . . .∆n |= Ω

Basic methods for theorem proving:

• evaluation of all possible interpretations (the 0-1 method),

• direct proof (forward chaining) – derivation of Ω from initial axioms;

KRR: Rule-Based Systems, Expert Systems, Inference Graphs,...

• search for proof (backward chaining) – search for derivation of Ω from

initial axioms; KRR: Backtracking Search, Abductive Reasoning, Diag-

nostic Systems, Question-Answering Systems, Prolog,...

• proving tautology – from the Deduction Theorem 1 we prove that

∆1 ∧∆2 ∧ . . .∆n ⇒ Ω is a tautology,

• indirect proof – through constraposition:

¬Ω⇒ ¬(∆1 ∧∆2 ∧ . . .∆n).

• Reductio ad Absurdum; basing on Deduction Theorem 2 we show that

∆1 ∧∆2 ∧ . . .∆n ∧ ¬Ω.

is unsatisfiable

c©Antoni Ligęza



Lecture Notes 8

Examples

Direct proof: (p⇒ r) ∧ (q ⇒ s) ∧ (¬r ∨ ¬s) |= (¬p ∨ ¬q):

1. p⇒ r assumption,

2. q ⇒ s assumption,

3. ¬r ∨ ¬s assumption,

4. s⇒ ¬r implication reconstruction; through equivalence to 3,

5. q ⇒ ¬r transitivity 2 and 4,

6. ¬p ∨ r EI from 1,

7. ¬q ∨ ¬r EI from 5

8. ¬p ∨ ¬q by resolution rule from 6 and 7.

Proving tautology: [p⇒ (q ⇒ r)] |= [q ⇒ (p⇒ r)].

We transform the formula [p ⇒ (q ⇒ r)] ⇒ [q ⇒ (p ⇒ r)] and through

elimination of implications we obtain α ∨ ¬α.

Indirect proof: p |= ¬q ⇒ ¬(p⇒ q)

1. ¬(¬q ⇒ ¬(p⇒ q)) assumption (contraposition),

2. ¬(q ∨ ¬(p⇒ q)) EI,

3. (¬q ∧ (p⇒ q)) De Morgan rule,

4. ¬q CE,

5. p⇒ q CE from 3,

6. ¬p ∨ q EI from 5,
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7. q ∨ ¬p commutativity from 6,

8. ¬p RR from 4 and 7.

Reductio ad Absurdum: (p ∨ q) ∧ ¬p |= q

1. p ∨ q assumption,

2. ¬p assumption,

3. ¬q assumption (negation of the hypothesis),

4. q RR to 1 and 2

5. ⊥ from 3 and 4.
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Example: Logical Consequence – EX-LCV16

(p⇒ q) ∧ (r ⇒ s)

(p ∨ r)⇒ (q ∨ s)
Let us put:

φ = (p⇒ q) ∧ (r ⇒ s)

and

ϕ = (p ∨ r)⇒ (q ∨ s),

So we have to check if:

φ |= ϕ. (1)

p q r s p⇒ q r ⇒ s (p⇒ q) ∧ (r ⇒ s) p ∨ r q ∨ s (p ∨ r)⇒ (q ∨ s)

0 0 0 0 1 1 1 0 0 1
0 0 0 1 1 1 1 0 1 1
0 0 1 0 1 0 0 1 0 0
0 0 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 0 1 1
0 1 0 1 1 1 1 0 1 1
0 1 1 0 1 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 1 0 0
1 0 0 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 0 0
1 0 1 1 0 1 0 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1

From columns 7 and 10 we conclude that there is logical consequence (but

no equivalence —see rows 7, 10, 12 i 15).
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The Resolution Method

1. Problem:

∆ |= H

2. From Deduction Theorem 2:

∆ ∪ ¬H

should be unsatisfiable.

3. Transform ∆ ∪ ¬H to CNF.

4. Using the RR derive an empty formula ⊥.

Example:

1. Problem:

(p⇒ q) ∧ (r ⇒ s) |= (p ∨ r)⇒ (q ∨ s)

2. From Deduction Theorem 2 — show that:

[(p⇒ q) ∧ (r ⇒ s)] ∪ ¬[(p ∨ r)⇒ (q ∨ s)]

is unsatisfiable.

3. After transformation to CNF we have:

{¬p ∨ q,¬r ∨ s, p ∨ r,¬q,¬s}

4. Derive ⊥.
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Dual Resolution Method

1. Problem:

∆ |= H

2. From Deduction Theorem 1 show that:

∆⇒ H

is a tautology.

3. Transform ∆⇒ H to DNF.

4. Using the DRR derive an empty formula — the always true one >.

Example:

1. Problem:

(p⇒ q) ∧ (r ⇒ s) |= (p ∨ r)⇒ (q ∨ s)

2. From Deduction Theorem 1 show that:

[(p⇒ q) ∧ (r ⇒ s)]⇒ [(p ∨ r)⇒ (q ∨ s)]

is a tautology.

3. After transformation to DNF we have:

{p ∧ ¬q; r ∧ ¬s;¬p ∧ ¬r; q; s}

4. Using the DRR derive an empty formula — the always true one >.
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Example of Resolution Derivation

A – signal from process,

P – signal added to a queue,

B – signal blocked by process,

D – signal received by process,

S – state of the process saved,

M – signal mask read,

H – signal management procedure activated,

N – procedure executed in normal mode,

R – process restart from context,

I – process must re-create context.

Rules — axiomatization:

A −→ P ,

P ∧ ¬B −→ D,

D −→ S ∧M ∧H,

H ∧N −→ R,

H ∧ ¬R −→ I,

Facts:

A, ¬B, ¬R.
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Application of RR to CNF:

{¬A∨P,¬P∨B∨D,¬D∨S,¬D∨M,¬D∨H,¬H∨¬N∨R,¬H∨R∨I, A,¬B,¬R}

c©Antoni Ligęza
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Conclusions

P , D, S, M , H, I, ¬N .
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Inference step; derivation

Step of inference: single application of RR.

Example:

Application of RR:
φ ∨ ¬p, p ∨ ψ

φ ∨ ψ
Notation: {φ ∨ ¬p, p ∨ ψ} `R φ ∨ ψ

Definition 1 Derivation A derivation of φ from ∆ we call a sequence:

φ1, φ2 . . . φk

such that:

• formula φ1 is derivable from ∆ (in a single step):

∆ ` φ1,

• every next formula is derivable from ∆ and the earlier-derived formulas:

{∆, φ1, φ2, . . . , φi} ` φi+1

for i = 2, 3, . . . , k − 1,

• φ is the last formula:

φ = φk

Notation: ∆ ` φ, and φ is called derivable from ∆.
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Set of Logical Consequences Cn

Definition 2 Let ∆ be set of formulas. The set of logical consequences is:

Cn(∆) = {φ : ∆ |= φ}

where every φ contains (only) propositional symbols of ∆.

Lemma 1 Properties of Cn There are:

• ∆ ⊆ Cn(∆),

• monotonicity — if ∆1 ⊆ ∆2, then:

Cn(∆1) ⊆ Cn(∆2)

• Cn(Cn(∆)) = Cn(∆) (the so-called fixed point).

Is the Fixed Point unique? Is it finitely defined ? Is it finite ?

Example: Consider the following set of formulas:

∆ = {¬(¬p ∧ ¬r), r ⇒ q,¬q, p⇒ t,¬(t ∧ ¬s)}

Show that:

∆ |= s
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The Semantic Tableau Method

Recall the notions of: an atom, a literal, a positive literal, a negative literal

{p,¬p}.

Recall that a formula p ∧ ¬p is always false. Formla p ∨ ¬p is always true.

Assumptions:

• we consider satisfiability of a formula,

• the starting point is the formula in original form! (it is not necessary to

transform it into the CNF/DNF),

• by analysis and decomposition we search for a model; no model means

unsatisfiability,

• we develop a tree (or a table):

– for conjunctive formals we develop a single branch (a linear form),

– for disjunctive formulas we develop branches,

• existence of a pair of complementary literals closes a given branch

(falsifies),

• lack of complementary literals — leads to a model (satisfiability),

• closing each branch means unsatisfiability of the original formula.

Example 1:

p ∧ (¬q ∨ ¬p)

Example 2:

(p ∨ q) ∧ (¬p ∧ ¬q)
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Examples

Example 1:

p ∧ (¬q ∨ ¬p)

p,¬q ∨ ¬p

p,¬q p,¬p

Example 2:

(p ∨ q) ∧ (¬p ∧ ¬q)

p ∨ q,¬p ∧ ¬q

p ∨ q,¬p,¬q

p,¬p, ¬q q,¬p,¬q
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Semantic Tableau Algorithm

Rules of transformation for conjunctive formulas (type α):

α α1 α2

¬¬A A

A1 ∧ A2 A1 A2

¬(A1 ∨ A2) ¬A1 ¬A2

¬(A1 ⇒ A2) A1 ¬A2

A1 ⇔ A2 A1 ⇒ A2 A2 ⇒ A1

Rules of transformation for disjunctive formulas (type β):

β β1 β2

B1 ∨B2 B1 B2

¬(B1 ∧B2) ¬B1 ¬B2

B1 ⇒ B2) ¬B1 B2

¬(B1 ⇔ B2) ¬(B1 ⇒ B2) ¬(B2 ⇒ B1)

An Algorithm for developing the Semantic Tree:

• The Root: the initial formula (in original form; WFF),

• U (for leaves) contains literals only:

– p,¬p ∈ U — stop/falsification; else

– stop/a model found,

• For a conjunctive formula α ∈ U :

U ′ = (U − {α}) ∪ {α1, α2}

• For a disjuctive formula β ∈ U we have branching:

U ′ = (U − {β}) ∪ {β1}
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U ′′ = (U − {β}) ∪ {β2}

Example:

1. Problem:

(p⇒ q) ∧ (r ⇒ s) |= (p ∨ r)⇒ (q ∨ s)

2. Based on the Deduction Theorem (2), it should be shown that:

[(p⇒ q) ∧ (r ⇒ s)] ∪ ¬[(p ∨ r)⇒ (q ∨ s)]

is unsatisfiable.

3. Transform to CNF. We have:

{¬p ∨ q,¬r ∨ s, p ∨ r,¬q,¬s}

4. Using Resolution Rule derive an empty clause — always false.

Problem: show that the following set of formulas is unsatisfiable with use of

Semantic Tableau method.

[(p⇒ q) ∧ (r ⇒ s)] ∪ ¬[(p ∨ r)⇒ (q ∨ s)]

In fact, we have a formula:

[(p⇒ q) ∧ (r ⇒ s)] ∧ ¬[(p ∨ r)⇒ (q ∨ s)]
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Constructive Theorem Proving: The Fitch System

• AND Introduction (AI):
φ1, . . . , φn
φ1 ∧ . . . ∧ φn

• AND Elimination (AE):
φ1 ∧ . . . ∧ φn

φi

• OR Introduction (OI):
φi

φ1 ∨ . . . ∨ φn
• OR Elimination (OE):

φ1 ∨ . . . ∨ φn, φ1 ⇒ ψ, . . . φn ⇒ ψ

ψ

• Negation Introduction (NI):

φ⇒ ψ, φ⇒ ¬ψ
¬φ

• Negation Elimination (NE):
¬¬φ
φ

• Implication Introduction (II):

φ ` ψ
φ⇒ ψ

• Implication Elimination (IE):

φ, φ⇒ ψ

ψ

• Equivalence Introduction (EI),

• Equivalence Elimination (EE)
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Example: Unicorn

Given the following Knowledge Base (KB):

• If the unicorn is mythical, then it is immortal

• If the unicorn is not mythical, then it is a mortal mammal

• If the unicorn is either immortal or a mammal, then it is horned

• The unicorn is magical if it is horned

answer the following questions:

• Is the unicorn mythical? (M )

• Is it magical? (G)

• Is it horned? (H)

In terms of logic:

KB |= G,H,M

KB ` G,H,M
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Unicorn - Logical Model

Definition of propositional variables:

• M: The unicorn is mythical

• I: The unicorn is immortal

• L: The unicorn is mammal

• H: The unicorn is horned

• G: The unicorn is magical

Building a Logical Model for the puzzle:

• If the unicorn is mythical, then it is immortal:

M −→ I

• If the unicorn is not mythical, then it is a mortal mammal:

¬M −→ (¬I ∧ L)

• If the unicorn is either immortal or a mammal, then it is horned:

(I ∨ L) −→ H

• The unicorn is magical if it is horned:

H −→ G

Resulting Boolean formula (the Knowledge Base):

(M −→ I) ∧ (¬M −→ (¬I ∧ L)) ∧ ((I ∨ L) −→ H) ∧ (H −→ G)
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A Solution: Formal Derivation of Logical Consequences

1. (M −→ I) ≡ (¬M ∨ I)

2. (¬M −→ (¬I ∧ L)) ≡ (M ∨ (¬I ∧ L))

3. (M ∨ (¬I ∧ L)) ≡ ((M ∨ ¬I) ∧ (M ∨ L))

4. ¬M ∨ I,M ∨ L

5. I ∨ L

6. I ∨ L, (I ∨ L) −→ H

7. H

8. H,H −→ G

9. G

So we have:

KB ` H ∧G

Questions:

• What about M (mythical), I (immortal) and L (mammal)?

• What are the exact models? What combinations are admissible?

• How many models do we have?

• What is the CNF of the original formula?

• What is the DNF of the original formula?

• Resolution, Dual Resolution, Semantic Tableau, Fitch System,...

Try each one; which one you prefer?
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