Logic for Computer Science. Knowledge Representation and Reasoning.

Lecture Notes
for
Computer Science Students
Faculty EAliIB-IEiT AGH

Antoni Ligęza

Other support material:
http://home.agh.edu.pl/~ligeza
https://ai.ia.agh.edu.pl/pl:dydaktyka:logic:start

Inference and Theorem Proving in Propositional Calculus

- Tasks and Models of Automated Inference,
- Theorem Proving models,
- Some important Inference Rules,
- Theorems of Deduction: 1 and 2,
- Models of Theorem Proving,
- Examples of Proofs,
- The Resolution Method,
- The Dual Resolution Method,
- Logical Derivation,
- The Semantic Tableau Method,
- Constructive Theorem Proving: The Fitch System,
- Example: The Unicorn,
- Looking for Models: Towards SAT.

Logic for KRR — Tasks and Tools

- Theorem Proving — Verification of Logical Consequence:

$$
\Delta \models H ;
$$

- Method of Theorem Proving: Automated Inference -- Derivation:

$$
\Delta \vdash H ;
$$

- SAT (checking for models) - satisfiability:

$$
\models_{I} H \quad \text { (if such I exists); }
$$

- un-SAT verification - unsatisfiability:

$$
\forall_{I} H \quad \text { (for any I); }
$$

- Tautology verification (completeness):

$$
\models H
$$

- Unsatisfiability verification

$$
\notin H
$$

Two principal issues:

- valid inference rules - checking:

$$
(\Delta \vdash H) \quad \longrightarrow \quad(\Delta \models H)
$$

- complete inference rules - checking:

$$
(\Delta \models H) \quad \longrightarrow \quad(\Delta \vdash H)
$$

Two Possible Fundamental Approaches:
 Checking of Interpretations
 versus
 Logical Inference

Two basic approaches - reasoning paradigms:

- systematic evaluation of possible interpretations - the 0-1 method; problem - combinatorial explosion; for n propositional variables we have 2^{n} interpretations!
- logical inference - derivation - with rules preserving logical consequence.

Notation: formula H (a Hypothesis) is derivable from Δ (a Knowledge Base; a set of domain axioms):

$$
\Delta \vdash H
$$

This means that there exists a sequence of applications of inference rules, such that H is mechanically derived from Δ.

Two principal issues in logical knowledge-based systems:

$$
\Delta \vdash H \quad \text { versus } \quad \Delta \models H
$$

i.e.

- is the derived formula valid?
- can any valid formula be derived?

An example derivation - for intuition

Just for intuition, let us consider an example of constructive proof by linear derivation:

$$
\begin{gathered}
\phi=(p \Rightarrow q) \wedge(r \Rightarrow s), \\
\varphi=(p \wedge r) \Rightarrow(q \wedge s) .
\end{gathered}
$$

This time we perform derivation of φ from ϕ :

$$
\phi \vdash \varphi
$$

A rough outline of derivation steps:

1. $p \Rightarrow q$
2. $r \Rightarrow s$
3.
4.
5.
6.
7.
8.

$$
q \wedge s
$$

9. $(p \wedge r) \vdash(q \wedge s)$
10. $(p \wedge r) \Rightarrow(q \wedge s)$

Obviously, there is also:

$$
\phi \models \varphi
$$

But why?

Some more important inference rules

- $\frac{\alpha}{\alpha \vee \beta}$ - Disjunction Introduction,
- $\frac{\alpha, \beta}{\alpha \wedge \beta}$-Conjunction Introduction,
- $\frac{\alpha \wedge \beta}{\alpha}$ - Conjunction Elimination,
- $\frac{\alpha, \alpha \Rightarrow \beta}{\beta}$ - Modus Ponens (modus ponendo ponens); implication elimination (EI),
- $\frac{\alpha \Rightarrow \beta, \neg \beta}{\neg \alpha}$ - Modus Tollens (modus tollendo tollens),
- $\frac{\alpha \vee \beta, \neg \alpha}{\beta}$ - Modus Tollendo Ponens,
- $\frac{\alpha \bigoplus \beta, \alpha}{\neg \beta}$ - Modus Ponendo Tollens,
- $\frac{\alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\alpha \Rightarrow \gamma}$ - Transitivity Rule,
- $\frac{\alpha \vee \gamma, \neg \gamma \vee \beta}{\alpha \vee \beta}$ - Resolution Rule,
- $\frac{\alpha \wedge \gamma ; \neg \gamma \wedge \beta}{\alpha \wedge \beta}$ - Dual Resolution Rule; (backward) dual resolution (works backwards); also termed consolution,
- $\frac{\alpha \Rightarrow \beta, \gamma \Rightarrow \delta}{(\alpha \vee \gamma) \Rightarrow(\beta \vee \delta)}$ - Constructive Dilemma I,
- $\frac{\alpha \Rightarrow \beta, \gamma \Rightarrow \delta}{(\alpha \wedge \gamma) \Rightarrow(\beta \wedge \delta)}$ - Constructive Dilemma II.

The Deduction Theorems

Theorem 1 Let $\Delta_{1}, \Delta_{2}, \ldots \Delta_{n}$ and Ω are logical formulas. Ω is their logical consequence iff $\Delta_{1} \wedge \Delta_{2} \wedge \ldots \Delta_{n} \Rightarrow \Omega$ is a tautology.

Theorem 2 Let $\Delta_{1}, \Delta_{2}, \ldots \Delta_{n}$ and Ω are logical formulas. Ω is their logical consequence iff $\Delta_{1} \wedge \Delta_{2} \wedge \ldots \Delta_{n} \wedge \neg \Omega$ is invalid (false under any interpretation).

Theorem proving: having $\Delta_{1}, \Delta_{2}, \ldots \Delta_{n}$ assumed to be true show that so is Ω. Hence:

$$
\Delta_{1} \wedge \Delta_{2} \wedge \ldots \Delta_{n} \models \Omega
$$

Basic methods for theorem proving:

- evaluation of all possible interpretations (the 0-1 method),
- direct proof (forward chaining) - derivation of Ω from initial axioms; KRR: Rule-Based Systems, Expert Systems, Inference Graphs,...
- search for proof (backward chaining) - search for derivation of Ω from initial axioms; KRR: Backtracking Search, Abductive Reasoning, Diagnostic Systems, Question-Answering Systems, Prolog,
- proving tautology - from the Deduction Theorem 1 we prove that $\Delta_{1} \wedge \Delta_{2} \wedge \ldots \Delta_{n} \Rightarrow \Omega$ is a tautology,
- indirect proof - through constraposition:
$\neg \Omega \Rightarrow \neg\left(\Delta_{1} \wedge \Delta_{2} \wedge \ldots \Delta_{n}\right)$.
- Reductio ad Absurdum; basing on Deduction Theorem 2 we show that $\Delta_{1} \wedge \Delta_{2} \wedge \ldots \Delta_{n} \wedge \neg \Omega$. is unsatisfiable

Examples

Direct proof: $(p \Rightarrow r) \wedge(q \Rightarrow s) \wedge(\neg r \vee \neg s) \models(\neg p \vee \neg q)$:

1. $p \Rightarrow r \quad$ assumption,
2. $q \Rightarrow s \quad$ assumption,
3. $\neg r \vee \neg s \quad$ assumption,
4. $s \Rightarrow \neg r \quad$ implication reconstruction; through equivalence to 3 ,
5. $q \Rightarrow \neg r \quad$ transitivity 2 and 4 ,
6. $\neg p \vee r \quad$ El from 1,
7. $\neg q \vee \neg r \quad$ El from 5
8. $\neg p \vee \neg q \quad$ by resolution rule from 6 and 7 .

Proving tautology: $[p \Rightarrow(q \Rightarrow r)] \models[q \Rightarrow(p \Rightarrow r)]$.
We transform the formula $[p \Rightarrow(q \Rightarrow r)] \Rightarrow[q \Rightarrow(p \Rightarrow r)]$ and through elimination of implications we obtain $\alpha \vee \neg \alpha$.

Indirect proof: $p \models \neg q \Rightarrow \neg(p \Rightarrow q)$

1. $\neg(\neg q \Rightarrow \neg(p \Rightarrow q)) \quad$ assumption (contraposition),
2. $\neg(q \vee \neg(p \Rightarrow q)) \quad \mathrm{El}$,
3. $(\neg q \wedge(p \Rightarrow q)) \quad$ De Morgan rule,
4. $\neg q \quad \mathrm{CE}$,
5. $p \Rightarrow q$

CE from 3,
6. $\neg p \vee q$

El from 5,
7. $q \vee \neg p$ commutativity from 6,
8. $\neg p$
RR from 4 and 7.

Reductio ad Absurdum: $(p \vee q) \wedge \neg p \models q$

1. $p \vee q$ assumption,
2. $\neg p$ assumption,
3. $\neg q \quad$ assumption (negation of the hypothesis),
4. $q \quad$ RR to 1 and 2
5. $\perp \quad$ from 3 and 4 .

Example: Logical Consequence - EX-LCV16

$$
\frac{(p \Rightarrow q) \wedge(r \Rightarrow s)}{(p \vee r) \Rightarrow(q \vee s)}
$$

Let us put:

$$
\phi=(p \Rightarrow q) \wedge(r \Rightarrow s)
$$

and

$$
\varphi=(p \vee r) \Rightarrow(q \vee s)
$$

So we have to check if:

$$
\begin{equation*}
\phi \models \varphi . \tag{1}
\end{equation*}
$$

p	q	r	s	$p \Rightarrow q$	$r \Rightarrow s$	$(p \Rightarrow q) \wedge(r \Rightarrow s)$	$p \vee r$	$q \vee s$	$(p \vee r) \Rightarrow(q \vee s)$
0	0	0	0	1	1	$\mathbf{1}$	0	0	$\mathbf{1}$
0	0	0	1	1	1	$\mathbf{1}$	0	1	$\mathbf{1}$
0	0	1	0	1	0	$\mathbf{0}$	1	0	$\mathbf{0}$
0	0	1	1	1	1	$\mathbf{1}$	1	1	$\mathbf{1}$
0	1	0	0	1	1	$\mathbf{1}$	0	1	$\mathbf{1}$
0	1	0	1	1	1	$\mathbf{1}$	0	1	$\mathbf{1}$
0	1	1	0	1	0	$\mathbf{0}$	1	1	$\mathbf{1}$
0	1	1	1	1	1	$\mathbf{1}$	1	1	$\mathbf{1}$
1	0	0	0	0	1	$\mathbf{0}$	1	0	$\mathbf{0}$
1	0	0	1	0	1	$\mathbf{0}$	1	1	$\mathbf{1}$
1	0	1	0	0	0	$\mathbf{0}$	1	0	$\mathbf{0}$
1	0	1	1	0	1	$\mathbf{0}$	1	1	$\mathbf{1}$
1	1	0	0	1	1	$\mathbf{1}$	1	1	$\mathbf{1}$
1	1	0	1	1	1	$\mathbf{1}$	1	1	$\mathbf{1}$
1	1	1	0	1	0	$\mathbf{0}$	1	1	$\mathbf{1}$
1	1	1	1	1	1	$\mathbf{1}$	1	1	$\mathbf{1}$

From columns 7 and 10 we conclude that there is logical consequence (but no equivalence -see rows $7,10,12$ i 15).

The Resolution Method

1. Problem:

$$
\Delta \models H
$$

2. From Deduction Theorem 2:

$$
\Delta \cup \neg H
$$

should be unsatisfiable.
3. Transform $\Delta \cup \neg H$ to CNF.
4. Using the RR derive an empty formula \perp.

Example:

1. Problem:

$$
(p \Rightarrow q) \wedge(r \Rightarrow s) \models(p \vee r) \Rightarrow(q \vee s)
$$

2. From Deduction Theorem 2 - show that:

$$
[(p \Rightarrow q) \wedge(r \Rightarrow s)] \cup \neg[(p \vee r) \Rightarrow(q \vee s)]
$$

is unsatisfiable.
3. After transformation to CNF we have:

$$
\{\neg p \vee q, \neg r \vee s, p \vee r, \neg q, \neg s\}
$$

4. Derive \perp.

Dual Resolution Method

1. Problem:

$$
\Delta \models H
$$

2. From Deduction Theorem 1 show that:

$$
\Delta \Rightarrow H
$$

is a tautology.
3. Transform $\Delta \Rightarrow H$ to DNF.
4. Using the DRR derive an empty formula - the always true one T.

Example:

1. Problem:

$$
(p \Rightarrow q) \wedge(r \Rightarrow s) \models(p \vee r) \Rightarrow(q \vee s)
$$

2. From Deduction Theorem 1 show that:

$$
[(p \Rightarrow q) \wedge(r \Rightarrow s)] \Rightarrow[(p \vee r) \Rightarrow(q \vee s)]
$$

is a tautology.
3. After transformation to DNF we have:

$$
\{p \wedge \neg q ; r \wedge \neg s ; \neg p \wedge \neg r ; q ; s\}
$$

4. Using the DRR derive an empty formula - the always true one T.

Example of Resolution Derivation

A - signal from process,
P - signal added to a queue,
B - signal blocked by process,
D - signal received by process,
\mathbf{S} - state of the process saved,
M - signal mask read,
H - signal management procedure activated,
\mathbf{N} - procedure executed in normal mode,
\mathbf{R} - process restart from context,
I - process must re-create context.

Rules - axiomatization:
$A \longrightarrow P$,
$P \wedge \neg B \longrightarrow D$,
$D \longrightarrow S \wedge M \wedge H$,
$H \wedge N \longrightarrow R$,
$H \wedge \neg R \longrightarrow I$,

Facts:
$A, \neg B, \neg R$.

Application of RR to CNF:

$\{\neg A \vee P, \neg P \vee B \vee D, \neg D \vee S, \neg D \vee M, \neg D \vee H, \neg H \vee \neg N \vee R, \neg H \vee R \vee I, A, \neg B, \neg R\}$

Conclusions

$P, D, S, M, H, I, \neg N$.

Inference step; derivation

Step of inference: single application of RR.

Example:

Application of RR:

$$
\frac{\phi \vee \neg p, p \vee \psi}{\phi \vee \psi}
$$

Notation: $\{\phi \vee \neg p, p \vee \psi\} \vdash_{R} \phi \vee \psi$
Definition 1 Derivation A derivation of ϕ from Δ we call a sequence:

$$
\phi_{1}, \phi_{2} \ldots \phi_{k}
$$

such that:

- formula ϕ_{1} is derivable from Δ (in a single step):

$$
\Delta \vdash \phi_{1},
$$

- every next formula is derivable from Δ and the earlier-derived formulas:

$$
\left\{\Delta, \phi 1, \phi_{2}, \ldots, \phi_{i}\right\} \vdash \phi_{i+1}
$$

for $i=2,3, \ldots, k-1$,

- ϕ is the last formula:

$$
\phi=\phi_{k}
$$

Notation: $\Delta \vdash \phi$, and ϕ is called derivable from Δ.

Set of Logical Consequences $C n$

Definition 2 Let Δ be set of formulas. The set of logical consequences is:

$$
C n(\Delta)=\{\phi: \Delta \models \phi\}
$$

where every ϕ contains (only) propositional symbols of Δ.

Lemma 1 Properties of $C n$ There are:

- $\Delta \subseteq C n(\Delta)$,
- monotonicity - if $\Delta_{1} \subseteq \Delta_{2}$, then:

$$
C n\left(\Delta_{1}\right) \subseteq C n\left(\Delta_{2}\right)
$$

- $C n(C n(\Delta))=C n(\Delta)$ (the so-called fixed point).

Is the Fixed Point unique? Is it finitely defined ? Is it finite?

Example: Consider the following set of formulas:

$$
\Delta=\{\neg(\neg p \wedge \neg r), r \Rightarrow q, \neg q, p \Rightarrow t, \neg(t \wedge \neg s)\}
$$

Show that:

$$
\Delta \models s
$$

The Semantic Tableau Method

Recall the notions of: an atom, a literal, a positive literal, a negative literal $\{p, \neg p\}$.

Recall that a formula $p \wedge \neg p$ is always false. Formla $p \vee \neg p$ is always true. Assumptions:

- we consider satisfiability of a formula,
- the starting point is the formula in original form! (it is not necessary to transform it into the CNF/DNF),
- by analysis and decomposition we search for a model; no model means unsatisfiability,
- we develop a tree (or a table):
- for conjunctive formals we develop a single branch (a linear form),
- for disjunctive formulas we develop branches,
- existence of a pair of complementary literals closes a given branch (falsifies),
- lack of complementary literals - leads to a model (satisfiability),
- closing each branch means unsatisfiability of the original formula.

Example 1:

$$
p \wedge(\neg q \vee \neg p)
$$

Example 2:

$$
(p \vee q) \wedge(\neg p \wedge \neg q)
$$

Examples

Example 1:

$$
\begin{gathered}
p \wedge(\neg q \vee \neg p) \\
p, \neg q \vee \neg p \\
p, \neg q \quad p, \neg p
\end{gathered}
$$

Example 2:

$$
\begin{gathered}
(p \vee q) \wedge(\neg p \wedge \neg q) \\
p \vee q, \neg p \wedge \neg q \\
p \vee q, \neg p, \neg q \\
p, \neg p, \neg q \quad q, \neg p, \neg q
\end{gathered}
$$

Semantic Tableau Algorithm

Rules of transformation for conjunctive formulas (type α):

α	α_{1}	α_{2}
$\neg \neg A$	A	
$A_{1} \wedge A_{2}$	A_{1}	A_{2}
$\neg\left(A_{1} \vee A_{2}\right)$	$\neg A_{1}$	$\neg A_{2}$
$\neg\left(A_{1} \Rightarrow A_{2}\right)$	A_{1}	$\neg A_{2}$
$A_{1} \Leftrightarrow A_{2}$	$A_{1} \Rightarrow A_{2}$	$A_{2} \Rightarrow A_{1}$

Rules of transformation for disjunctive formulas (type β):

β	β_{1}	β_{2}
$B_{1} \vee B_{2}$	B_{1}	B_{2}
$\neg\left(B_{1} \wedge B_{2}\right)$	$\neg B_{1}$	$\neg B_{2}$
$\left.B_{1} \Rightarrow B_{2}\right)$	$\neg B_{1}$	B_{2}
$\neg\left(B_{1} \Leftrightarrow B_{2}\right)$	$\neg\left(B_{1} \Rightarrow B_{2}\right)$	$\neg\left(B_{2} \Rightarrow B_{1}\right)$

An Algorithm for developing the Semantic Tree:

- The Root: the initial formula (in original form; WFF),
- U (for leaves) contains literals only:
- $p, \neg p \in U$ - stop/falsification; else
- stop/a model found,
- For a conjunctive formula $\alpha \in U$:

$$
U^{\prime}=(U-\{\alpha\}) \cup\left\{\alpha_{1}, \alpha_{2}\right\}
$$

- For a disjuctive formula $\beta \in U$ we have branching:

$$
U^{\prime}=(U-\{\beta\}) \cup\left\{\beta_{1}\right\}
$$

$$
U^{\prime \prime}=(U-\{\beta\}) \cup\left\{\beta_{2}\right\}
$$

Example:

1. Problem:

$$
(p \Rightarrow q) \wedge(r \Rightarrow s) \models(p \vee r) \Rightarrow(q \vee s)
$$

2. Based on the Deduction Theorem (2), it should be shown that:

$$
[(p \Rightarrow q) \wedge(r \Rightarrow s)] \cup \neg[(p \vee r) \Rightarrow(q \vee s)]
$$

is unsatisfiable.
3. Transform to CNF. We have:

$$
\{\neg p \vee q, \neg r \vee s, p \vee r, \neg q, \neg s\}
$$

4. Using Resolution Rule derive an empty clause - always false.

Problem: show that the following set of formulas is unsatisfiable with use of Semantic Tableau method.

$$
[(p \Rightarrow q) \wedge(r \Rightarrow s)] \cup \neg[(p \vee r) \Rightarrow(q \vee s)]
$$

In fact, we have a formula:

$$
[(p \Rightarrow q) \wedge(r \Rightarrow s)] \wedge \neg[(p \vee r) \Rightarrow(q \vee s)]
$$

Constructive Theorem Proving: The Fitch System

- AND Introduction (AI):

$$
\frac{\phi_{1}, \ldots, \phi_{n}}{\phi_{1} \wedge \ldots \wedge \phi_{n}}
$$

- AND Elimination (AE):

$$
\frac{\phi_{1} \wedge \ldots \wedge \phi_{n}}{\phi_{i}}
$$

- OR Introduction (OI):

$$
\frac{\phi_{i}}{\phi_{1} \vee \ldots \vee \phi_{n}}
$$

- OR Elimination (OE):

$$
\frac{\phi_{1} \vee \ldots \vee \phi_{n}, \phi_{1} \Rightarrow \psi, \ldots \phi_{n} \Rightarrow \psi}{\psi}
$$

- Negation Introduction (NI):

$$
\frac{\phi \Rightarrow \psi, \phi \Rightarrow \neg \psi}{\neg \phi}
$$

- Negation Elimination (NE):

$$
\frac{\neg \neg \phi}{\phi}
$$

- Implication Introduction (II):

$$
\frac{\phi \vdash \psi}{\phi \Rightarrow \psi}
$$

- Implication Elimination (IE):

$$
\frac{\phi, \phi \Rightarrow \psi}{\psi}
$$

- Equivalence Introduction (EI),
- Equivalence Elimination (EE)

Example: Unicorn

Given the following Knowledge Base (KB):

- If the unicorn is mythical, then it is immortal
- If the unicorn is not mythical, then it is a mortal mammal
- If the unicorn is either immortal or a mammal, then it is horned
- The unicorn is magical if it is horned
answer the following questions:
- Is the unicorn mythical? (M)
- Is it magical? (G)
- Is it horned? (H)

In terms of logic:

$$
\begin{aligned}
& \mathrm{KB} \models G, H, M \\
& \mathrm{~KB} \vdash G, H, M
\end{aligned}
$$

Unicorn - Logical Model

Definition of propositional variables:

- M : The unicorn is mythical
- I: The unicorn is immortal
- L : The unicorn is mammal
- H : The unicorn is horned
- G : The unicorn is magical

Building a Logical Model for the puzzle:

- If the unicorn is mythical, then it is immortal:

$$
M \longrightarrow I
$$

- If the unicorn is not mythical, then it is a mortal mammal:

$$
\neg M \longrightarrow(\neg I \wedge L)
$$

- If the unicorn is either immortal or a mammal, then it is horned:

$$
(I \vee L) \longrightarrow H
$$

- The unicorn is magical if it is horned:

$$
H \longrightarrow G
$$

Resulting Boolean formula (the Knowledge Base):

$$
(M \longrightarrow I) \wedge(\neg M \longrightarrow(\neg I \wedge L)) \wedge((I \vee L) \longrightarrow H) \wedge(H \longrightarrow G)
$$

A Solution: Formal Derivation of Logical Consequences

1. $(M \longrightarrow I) \equiv(\neg M \vee I)$
2. $(\neg M \longrightarrow(\neg I \wedge L)) \equiv(M \vee(\neg I \wedge L))$
3. $(M \vee(\neg I \wedge L)) \equiv((M \vee \neg I) \wedge(M \vee L))$
4. $\neg M \vee I, M \vee L$
5. $I \vee L$
6. $I \vee L,(I \vee L) \longrightarrow H$
7. H
8. $H, H \longrightarrow G$
9. G

So we have:

$$
\mathrm{KB} \vdash H \wedge G
$$

Questions:

- What about M (mythical), I (immortal) and L (mammal)?
- What are the exact models? What combinations are admissible?
- How many models do we have?
- What is the CNF of the original formula?
- What is the DNF of the original formula?
- Resolution, Dual Resolution, Semantic Tableau, Fitch System,... Try each one; which one you prefer?

