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Limitations of Propositional Calculus: Expressive Power

Consider the following examples in Natural Language (NL):

Adam is Bob’s brother. Bob is Adam’s brother.

If Adam is Bob’s brother then Bob is Adam’s brother.

If X is Y’s brother then Y is X’s brother.

If X is father of Y, and Y is father of Z, then X is grandfather of Z.

If block A is on block B, and block B is on block C, then A is above C.

Everything has it’s price.

There is no free lunch. (”No free lunch” (NFL) theorem...)

Everybody loves someone. Everybody is loved by someone.

If everybody loves someone then anyone is loved by somebody.

If X is connected to Y, and Y is connected to Z, then X is connected to Z.

Every student of AGH is smart. Jan is a student of AGH. Jan is smart.

There exists a set of all sets.

The barber shaves anyone who does not shave himself.
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Predicate Logic – New Opening: High Expressive Power.

Objects, Variables, Relations, Constructions and Operations

New components:

• Constants — representation of individual (atomic) objects,

• Variables — symbols of unknown/universal objects

• Predicate symbols — names of relations among objects,

• Quantifiers — there exists/existential quantifier: ∃X : Φ(X);

• Quantifiers — for all/universal quantifier: ∀X : Φ(X),

• Terms — objects of complex structure; connected atomic objects.

Logical connectives:

• negation,

• conjunction, disjunction,

• implication, equivalence.

Operations:

• Abstraction — from individual objects properties to universal proper-

ties,

• Specification — from universal properties to specific ones,

• Properties of Relations — e.g. symmetry, transitivity,

• Specification of Constraints — relations + variables + quantification

• Complex Logical formulas — with use of logical connectives,

• Complex Logical Inference — general rules, universal laws.

c©Antoni Ligęza
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Basic limitation of Propositional Logic: no Universal Rules

Consider the following classical example:

Socrates is a man.

Every man is mortal.

Socrates is mortal.

man(plato).

man(socrates).

mortal(X):- man(X).

mother(eva,nadjed).

father(john,tom).

father(john,ted).

father(john,eva).

father(ted,jimmy).

man(tom).

man(ted).

woman(eva).

parent(X,Y):- father(X,Y).

parent(X,Y):- mother(X,Y).

brother(B,X):-

parent(P,B),

parent(P,X),

man(B),

B \= X.
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uncle(U,X):-

parent(P,X),

brother(U,P).
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Alphabet and Notation

Definition 1 A relation R is any subset of Cartesian Product of some given

sets:

R ⊆ X1 ×X2 × . . .×Xn

Relation is a set. Elements of any relations are tuples of the form

(x1, x2, . . . , xn).

Notation: R(x1, x2, . . . , xn) is read: R holds for arguments x1, x2, . . . , xn.

Let there be given the following, pairwise disjoint four sets of symbols:

• C — a set of constant symbols (or constants, for short),

• V — a set of variable symbols (or variables, for short),

• F — a set of function (term) symbols,

• P — a set of relation (predicate) symbols.

Definition 2 Terms:

• if c is a constant, c ∈ C, then c ∈ TER;

• if X is a variable, X ∈ V , then X ∈ TER;

• if f is an n-ary function symbol, f ∈ F , and t1, t2, . . . , tn are terms, then
f(t1, t2, . . . , tn) ∈ TER;

• all the elements of TER are generated only by applying the above rules.

The number n is referred to as the arity of f . Notation:

f/n

c©Antoni Ligęza
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Examples of Terms

Assume that a, b, c ∈ C, X, Y, Z ∈ V , f, g ∈ F , and arity of f and g is 1 and

2, respectively.

Then, all the following expressions are examples of terms:

• a, b, c;

• X, Y, Z;

• f(a), f(b), f(c), f(X), f(Y ), f(Z);

g(a, b), g(a,X), g(X, a), g(X, Y );

f(g(a, b)), g(X, f(X)), g(f(a), g(X, f(Z))).

The set of terms (even for one constant and functional symbol) is:

• infinite,

• countable.

Each term can be represented as a tree.

Figure 1: Visualization of the tree-like structure of a term

c©Antoni Ligęza
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Example applications of Terms

Prolog:

book (book_title,

author(first_name,last_name),

publisher_name,

year_of_publication

)

XML:

<book>

<book_title> Learning XML </book_title>

<author>

<first_name> Erik </first_name>

<last_name> Ray </last_name>

</author>

<publisher_name> O’Reilly & Associates, Inc. </publisher_name>

<year_of_publication> 2003 </year_of_publication>

</book>

YAML:

book:

title: book_title

author: author_name

publisher: publisher_name

year: year_of_publication

c©Antoni Ligęza
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Applications of Terms

LATEX
x
y√

1 + x
y

,

\frac{

\frac{x}{y}

}

{

\sqrt{1+\frac{x}{y}}

}

Lists:

[red, green, blue, yellow]

[red|green, blue, yellow]

list(red,list(green,list(blue,list(yellow,nil))))

Trees:

tree (

tree (left_left, left_right),

tree (right_left, right_right)

)

Other: records, complex structures, natural numbers (Peano arithmetics),...

c©Antoni Ligęza



Lecture Notes 12

Formulas

Definition 3 The set of Atomic Formulas ATOM is defined as one satisfy-

ing the following conditions:

• if p is an n-ary predicate symbol, p ∈ P , and t1, t2, . . . , tn are terms,

then p(t1, t2, . . . , tn) ∈ ATOM ;

• all the elements of ATOM are generated by applying the above rule.

The elements of ATOM are called atomic formulae or atoms, for short.

Examples of atomic formulas:

• p(a), p(b), q(a, a), q(a, c);

• p(X), p(Y ), q(X,X), q(X,Z);

• p(f(a)), p(f(X)), q(f(g(a, b)), g(X, f(X))), q(g(f(a), g(X, f(Z))), a).

Terms vs. Atomic Formulas — what is the difference?

Definition 4 Formulas: FOR

• ATOM ⊆ FOR;

• if Φ is a formula, Φ ∈ FOR, then ¬(Φ) ∈ FOR;

• if Φ and Ψ are formulae, Φ,Ψ ∈ FOR, then (Φ ∧ Ψ), (Φ ∨ Ψ), (Φ⇒ Ψ),

(Φ⇔ Ψ) ∈ FOR;

• if Φ ∈ FOR, X denotes a variable, then ∀X(Φ) ∈ FOR and ∃X(Φ) ∈
FOR;

• all the elements of FOR must be generated by applying the above

rules.
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General note:

Although we can define formulas such as ∀X : p or ∃X : q it seems no to be

rational; it is reasonable to qunatify over variables occurring in a formula,

e.g. ∀X∃Y : p(X, Y )

Notation:

• restricted general quantifier: ∀X ∈ DX , ∀X∈DX
,

• there exists exactly one element: ∃!X,

• ∀— general qunatifier (generalized conjunction); also:
∧

,

• ∃— existential quantifier (generalized disjunction); also:
∨

,

Generalization of conjunction:

∀X : p(X)
?≡ p(a) ∧ p(b) ∧ p(c) ∧ . . .

Generalization of disjunction:

∃X : p(X)
?≡ p(a) ∨ p(b) ∨ p(c) ∨ . . .

Formulas (terms) with no variables: ground formulas/ground instances.

Free variable: X is a free variable in p(X).

Bound variable: X is a bound variable in ∀X : p(X).

We can construct formulas with free and bound variables...

c©Antoni Ligęza
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The Roles of Variables. Free and Bound Variables

The role of variables is three-fold:

• names/references to unknown objects — they define boundings to

quantifiers; free variables are not in use,

• placeholders — they keep place for (unknown) objects; arity!

• coreference constraints — they define coreferrence constraints (bind-

ing of occurrences; data carriers).

Occurrence of a variable in a formula can be:

• bound — within the scope of a quantifier,

• free — out of the scope of any quantifier,

A variable is bound in a formula iff all its occurrences are bound.

Definition 5 Free variables in a formula: FV ()

• if t ∈ V then FV (t) = {t};

• if t ∈ C then FV (t) = ∅;

• if t = f(t1, t2, . . . , tn) ∈ TER then FV (t) = FV (t1)∪FV (t2)∪. . .∪FV (tn);

• if q = p(t1, t2, . . . , tn) ∈ ATOM then FV (q) = FV (t1) ∪ FV (t2) ∪ . . . ∪
FV (tn);

• FV (¬Φ) = FV (Φ);

• FV (Φ �Ψ) = FV (Φ) ∪ FV (Ψ) for any � ∈ {∧,∨,⇒,⇔};

• FV (∇X(Φ)) = FV (Φ) \ {X} for ∇ ∈ {∀,∃}.

c©Antoni Ligęza
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The Universe, Interpretation and Variable Assignment

In order to define the sematics we need:

• D — an non-empty set, the Universe,

• I — an Interpretation — a mapping of constants, function symbols, and

predicate symbols into elements of D, functions over D and relations

over D,

• v — Variable Assignment — assignment of elements of D (ground

terms) to free variables.

Definition 6 The Variable Assignment v:

v : V → D

may be defined over the elements of the universe (for simplicity)

Definition 7 An interpretation I:

• for any constant c ∈ C, I(c) ∈ D;

• for any free occurrence of variable X ∈ V , I(X) = v(X), where v(X) ∈
D;

• for any function symbol f ∈ F of arity n, I(f) is a function of the type

I(f) : Dn → D;

• for any predicate symbol p ∈ P of arity n, I(p) is a relation such that

I(p) ⊆ Dn;

• for any term t ∈ TER, such that t = f(t1, t2, . . . , tn),

I(t) = I(f)(I(t1), I(t2), . . . , I(tn)).

c©Antoni Ligęza
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Semantics of the Predicate Calculus

Semantics = assignment of the meaning in the considered World; let:

• D — be the Universe, ,

• I — be the Interpretation, and

• v — be the Variable Assignment (or, for simplicity, we consider only

closed formulas).

Definition 8 Formulas satisfaction

1. |=I,v p(t1, t2, . . . , tn) iff (if and only if) (I(t1), I(t2), . . . , I(tn)) ∈ I(p) (re-
call that I(X) = v(X) for any free variable X ∈ VAR;

2. |=I,v ¬Φ iff 6|=I,v Φ;

3. |=I,v Φ ∧Ψ iff both |=I,v Φ and |=I,v Ψ;

4. |=I,v Φ ∨Ψ iff |=I,v Φ or |=I,v Ψ;

5. |=I,v Φ⇒ Ψ iff 6|=I,v Φ or |=I,v Ψ;

6. |=I,v Φ⇔ Ψ iff |=I,v Φ and |=I,v Ψ, or, 6|=I,v Φ and 6|=I,v Ψ;

7. |=I,v ∀XΦ iff for any d ∈ D and any variable assignment u such that
u(X) = d and u(Y ) = v(Y ) for any Y 6= X , there is |=I,u Φ;

8. |=I,v ∃XΦ iff there exists d ∈ D such that for variable assignment u de-
fined as u(X) = d and u(Y ) = v(Y ) for any Y 6= X , there is |=I,u Φ.

c©Antoni Ligęza



Lecture Notes 17

Important Comments

For simplicity we consider closed formulas — no free variables are allowed.

If in a formula there are free variables, should they be considered universally

quantified or existentially quantified? Or a combination of that? Example:

p(X) ∨ ¬p(Y ) is a tautology or not?

For convenience and for clarity, all the occurrences of variables are re-

named in a consequent way so that no conflicts of variable names exist.

Definition 9 Logical Consequence (case of closed formulas):

A formulaH is a logical consequence of set of formulas ∆1,∆2, . . . ,∆n if and

only if for any interpretation I (and universe D) satisfying ∆1∧∆2∧ . . .∧∆n,

H is also satisfied under interpretation I (and universe D).

Example: How many possible interpretations can be defined for the follow-

ing formulas:

• p,

• p ∧ q, p ∨ q, p⇒ q,

• p(a),

• p(f(a))),

• ∀X : p(X),

• ∃X : p(X).

c©Antoni Ligęza
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The Herbrand Universe

Definition 10 Herbrand Universe:

Let H0 = C(∆), i.e. H0 contains all the constants occurring in some set of

formulas ∆ (if C(∆) = ∅ then one defines H0 in such a way that it contains

a single arbitrary symbol, say H0 = {c}).

Now, for i = 0, 1, 2, . . . , let Hi+1 = Hi ∪ {f(t1, t2, . . . , tn) : f ∈
F (∆) and t1, t2, . . . , tn ∈ Hi} (where the arity of f is n). Then H∞ is called

the Herbrand Universe of ∆.

Definition 11 The Herbrand Base:

Let ∆ be a set of formulas and let H be the Herbrand Universe of ∆. A set

BH = {p(h1, h2, . . . , hn) : h1, h2, . . . , hn ∈ H, p ∈ P (∆)} (where the arity of p

is n) is called the Herbrand base or the atom set of ∆.

Definition 12 The Herbrand Interpretation:

Let ∆ be a set of formulas and let H be the Herbrand Universe of ∆. Any

interpretation IH is called a Herbrand interpretation (H-interpretation) if the

following conditions are satisfied:

• for any constant c ∈ H, IH(c) = c;

• for any n-ary functional symbol f ∈ F (∆), and any h1, h2, . . . , hn ∈ H,

IH(f) : (h1, h2, . . . , hn)→ f(h1, h2, . . . , hn).

c©Antoni Ligęza
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The Herbrand Universe - an Example

Consider the following example Block World:

Figure 2: Block World Example

The Herbrand Universe is {a, b, c, 1, 2, 3, 4}; it is finite (no terms).

Let ∆ = {on/2} – we have a single 2-argument predicate.

The Herbrand Base is:

{on(a, a), on(a, b), on(a, c), on(a, 1), on(a, 2), on(a, 3), on(a, 4)

{on(b, a), on(b, b), on(b, c), on(b, 1), on(b, 2), on(b, 3), on(b, 4)

...

{on(4, a), on(4, b), on(4, c), on(4, 1), on(4, 2), on(4, 3), on(4, 4)}

The intended Herbrand Interpretation is |=HI {on(c, a), on(a, 1), on(b, 3)}
It defines the physical state of the system.

But generally, any subset of the Herbrand Base (i.e. selected atoms as-

sumed to be true) defines a legal Herbrand Interpretation.

c©Antoni Ligęza
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The Herbrand Theorems

Theorem 1 Herbrand Theorem I: A set of clauses S (a formula in CNF with

all variables universally quantified) is unsatisfiable iff it is unsatisfiable under

any Herbrand Interpretation.

Theorem 2 Herbrand Theorem II: A set of clauses S (a formula in CNF with

all variables universally quantified) is unsatisfiable iff there exists finite and

unsatisfiable set S ′ of ground instances of clauses of S; S ′ ⊆ S.

W word of rough explanation...

1. Herbrand interpretations restrict checking of unsatisfiability to

finie/countable Herbrand Universes (no new symbols are introduced).

2. Using Herbrand Base is analogous to reducing the FOPC to PC.

3. Herbrand theorems are useful in proving satisfiability (in case of Dual

Resolution) and unsatisfiability (in case of Resolution Theorem Prov-

ing) of sets of clauses in th S-Form.

4. Herbrand theorems are used in proofs of properties of Resolution The-

orem Proving and Dual Resolution Theorem Proving.

c©Antoni Ligęza
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Formulas Transformation Rules FOPC

Notation: Φ[X] — explicit occurrence of variable X in formula Φ.

Recall that ∀ is a generalized conjunction and ∃ is a generalized disjunction.

Basic rules for quantifiers (X does not occur in Ψ):

• ∀XΦ[X] ∧Ψ ≡ ∀X(Φ[X] ∧Ψ),

• ∀XΦ[X] ∨Ψ ≡ ∀X(Φ[X] ∨Ψ),

• ∃XΦ[X] ∧Ψ ≡ ∃X(Φ[X] ∧Ψ),

• ∃XΦ[X] ∨Ψ ≡ ∃X(Φ[X] ∨Ψ).

Generalized De Morgan Rules:

• ¬(∀XΦ[X]) ≡ ∃X(¬Φ[X]),

• ¬(∃XΦ[X]) ≡ ∀X(¬Φ[X]).

Distribution Rules for Quantifiers:

• ∀XΦ[X] ∧ ∀XΨ[X] ≡ ∀X(Φ[X] ∧Ψ[X]),

• ∃XΦ[X] ∨ ∃XΨ[X] ≡ ∃X(Φ[X] ∨Ψ[X]).

Auxiliary Rules with Renaming of Variables:

• ∀XΦ[X] ∨ ∀XΨ[X] ≡ ∀XΦ[X] ∨ ∀YΨ[Y ] ≡ ∀X∀Y (Φ[X] ∨Ψ[Y ]),

• ∃XΦ[X] ∧ ∃XΨ[X] ≡ ∃XΦ[X] ∧ ∃YΨ[Y ] ≡ ∃X∃Y (Φ[X] ∧Ψ[Y ]).

c©Antoni Ligęza
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Most important equivalent transformations — Analogs to

Propositional Calculus

• ¬¬φ ≡ φ — double negation elimination,

• φ ∧ ψ ≡ ψ ∧ φ — conjunction alternation,

• φ ∨ ψ ≡ ψ ∨ φ — disjunction alternation,

• (φ ∧ ϕ) ∧ ψ ≡ φ ∧ (ϕ ∧ ψ) — commutativity,

• (φ ∨ ϕ) ∨ ψ ≡ φ ∨ (ϕ ∨ ψ) — commutativity,

• (φ ∨ ϕ) ∧ ψ ≡ (φ ∧ ψ) ∨ (ϕ ∧ ψ) — distributive law,

• (φ ∧ ϕ) ∨ ψ ≡ (φ ∨ ψ) ∧ (ϕ ∨ ψ) — distributive law,

• φ ∧ φ ≡ φ — idempotency,

• φ ∨ φ ≡ φ — idempotency,

• φ ∧ ⊥ ≡ ⊥, φ ∧ > ≡ φ — identity,

• φ ∨ ⊥ ≡ φ, φ ∨ > ≡ >— identity,

• φ ∨ ¬φ ≡ >— tertium non datur ; excluded middle,

• φ ∧ ¬φ ≡ ⊥— falsification,

• ¬(φ ∧ ψ) ≡ ¬(φ) ∨ ¬(ψ) — De Morgan rule,

• ¬(φ ∨ ψ) ≡ ¬(φ) ∧ ¬(ψ) — De Morgan rule,

• φ⇒ ψ ≡ ¬ψ ⇒ ¬φ — contraposition,

• φ⇒ ψ ≡ ¬φ ∨ ψ — implication elimination.

c©Antoni Ligęza
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Normal Forms

Definition 13 Formula Φ is in Prenex Normal Form iff it is represented as

(Q1X1) . . . (QnXn)(M),

where (QkXk) (for 1 ≤ k ≤ n) is (∀Xk) or (∃Xk), and M — the so called

Matrix — is a quantifier-free formula.

Transforming to Prenex Normal Form (PNF):

1. Elimination of⇔ i⇒ by equivalent transformations,

2. Move all negation signs directly before predicate symbols (De Morgan

Rules – also for quantifiers; double negation elimination),

3. Move all quantifiers into the prefix (prenex) using the distributivity rules.

Example:

Transform: ∃Z∀X((r(Z) ∧ p(X)⇒ ∃Y q(X, Y )) to PNF

∃Z∀X((r(Z) ∧ p(X)⇒ ∃Y q(X, Y )) ≡

∃Z∀X(¬(r(Z) ∧ p(X) ∨ ∃Y q(X, Y )) ≡

∃Z∀X((¬r(Z) ∨ ¬p(X) ∨ ∃Y q(X, Y )) ≡

∃Z∀X∃Y (¬r(Z) ∨ ¬p(X) ∨ q(X, Y ))

c©Antoni Ligęza
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Skolem Normal Form and Skolemization

Definition 14 Formula Φ is in Skolem Normal Form if it is in Prenex Normal

Form and:

• There are no existential quantifiers in the prenex (prefix),

• the matrix M in in CNF.

Transforming to Skolem Normal Form:

1. Transform the formula to PNF,

2. Transform the matrix M to CNF,

3. Sequentially transform the prenex (Q1X1) . . . (QnXn), until all existential

quantifiers are eliminated:

• if there is in the prenex QrXr = ∃Xr and there are no preced-

ing universal quantifiers, then in the matrix M we replace XR with

an arbitrary new constant c, which does not appear in M and we

delete ∃Xr from the prenex,

• if before QrXr = ∃Xr there occur s universal quantifiers

(∀Xj1) . . . (∀Xjs), where (1 ≤ j1 ≤ js ≤ r), then in the matrix M

we replace XR with a new term of arity s, i.e. f(Xj1, . . . , Xjs) (f

does not appear in M ) and we delete ∃Xr from the prenex.

Example:

∃Z∀X∃Y (¬r(Z) ∨ ¬p(X) ∨ q(X, Y )) ≡ ∀X(¬r(c) ∨ ¬p(X) ∨ q(X, f(X))),

where c is a new constant and f is a functional symbol.

Finally, the so called S-Form (Clausal Form) is: {¬r(c)∨¬p(X)∨q(X, f(X))}
Note that all the quantifiers can be omitted, since now all the variables are

universally quantified.
c©Antoni Ligęza
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• Theorem Proving — Verification of Logical Consequence:

∆ |= H;

• Method of Theorem Proving: Automated Inference —- Derivation:

∆ ` H;

• SAT (checking for models) — satisfiability:

|=I H (if such I exists);

• un-SAT verification — unsatisfiability:

6|=I H (for any I);

• Tautology verification (The Dual Resolution and completeness verifica-

tion):

|= H

• Unsatisfiability verification (The Resolution Method)

6|= H

Two principal issues:

• valid inference rules — checking:

(∆ ` H) −→ (∆ |= H)

• complete inference rules — checking:

(∆ |= H) −→ (∆ ` H)

c©Antoni Ligęza
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The Deduction Theorems

Theorem 3 Let ∆1,∆2, . . .∆n and Ω are logical formulas. Ω is their logical

consequence iff ∆1 ∧∆2 ∧ . . .∆n ⇒ Ω is a tautology.

Theorem 4 Let ∆1,∆2, . . .∆n and Ω are logical formulas. Ω is their logical

consequence iff ∆1 ∧∆2 ∧ . . .∆n ∧¬Ω is invalid (false under any interpreta-

tion).

Theorem proving: having ∆1,∆2, . . .∆n assumed to be true show that so is

Ω. Hence:

∆1 ∧∆2 ∧ . . .∆n |= Ω

Basic methods for theorem proving:

• evaluation of all possible interpretations (the 0-1 method),

• direct proof (forward chaining) – derivation of Ω from initial axioms;

KRR: Rule-Based Systems, Expert Systems, Inference Graphs,...

• search for proof (backward chaining) – search for derivation of Ω from

initial axioms; KRR: Backtracking Search, Abductive Reasoning, Diag-

nostic Systems, Question-Answering Systems, Prolog,...

• proving tautology – from the Deduction Theorem 1 we prove that

∆1 ∧∆2 ∧ . . .∆n ⇒ Ω is a tautology (Dual Resolution),

• indirect proof – through constraposition:

¬Ω⇒ ¬(∆1 ∧∆2 ∧ . . .∆n).

• Reductio ad Absurdum; basing on Deduction Theorem 2 we show that

∆1 ∧∆2 ∧ . . .∆n ∧ ¬Ω.

is unsatisfiable (Resolution Theorem Proving)
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Some most important Inference Rules (Fitch)

• AND Introduction (AI):
φ1, . . . , φn
φ1 ∧ . . . ∧ φn

• AND Elimination (AE):
φ1 ∧ . . . ∧ φn

φi

• OR Introduction (OI):
φi

φ1 ∨ . . . ∨ φn
• OR Elimination (OE):

φ1 ∨ . . . ∨ φn, φ1 ⇒ ψ, . . . φn ⇒ ψ

ψ

• Negation Introduction (NI):

φ⇒ ψ, φ⇒ ¬ψ
¬φ

• Negation Elimination (NE):
¬¬φ
φ

• Implication Introduction (II):

φ ` ψ
φ⇒ ψ

• Implication Elimination (IE):

φ, φ⇒ ψ

ψ

• Equivalence Introduction (EI),

• Equivalence Elimination (EE)
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Extra Rules for Quantifiers (Fitch)

Universal Introduction (UI)

Φ

∀X : Φ

Universal Elimination (UE)

∀X : Φ[X]

Φ[t]

gdzie t ∈ TER.

Existential Introduction (EI)

Φ[t]

∃X : Φ[X]

Existential Elimination (EE)

∃X : Φ[X], ∀Y : (Φ[Y ]⇒ Ψ)

Ψ

where the variable Y does not occur in formula Ψ.
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Lecture Notes 29

Resolution Theorem Proving

1. Instead of proving that:

{∆1,∆2, . . . ,∆n} |= H

we prove unsatisfiability of:

{∆1,∆2, . . . ,∆n} ∪ {¬H}

2. The initial formulas are transformed into equivalent Prenex Normal

Form (PNF).

3. The matrix M of the formula is transformed to CNF.

4. By the skolemization procedure we eliminate all the existential quanti-

fiers.

5. Since all the variables are universally quantified, the prenex contaning

quantification can be removed.

6. As the result we obtain a set of clauses: the so-called S-Form.

7. Using the Resolution Metod we attempt to derive and empty clause

(always false).

Resolution Rule for clauses C1 = φ ∨ q1 and C2 = ϕ ∨ ¬q2; σ is a unifying

substitution (mgu):
φ ∨ q1, ϕ ∨ ¬q2

φσ ∨ ϕσ
We need also the Factorization Rule:

C

Cθ

The Factorization Rule is necessary for the cases such as:

{p(X) ∨ p(Y ),¬p(U) ∨ ¬p(V )}
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Example: The Barber Paradox

There is a barber who was ordered to shave anyone who does not

shave himself. Should he shave himself or not?

A simple problem formalization in FOPC:

A. ∀X¬shaves(X,X) ⇒ shaves(barber, X) — anyone who does not

shave himself is shaved by the barber.

B. ∀Y shaves(barber, Y ) ⇒ ¬shaves(Y, Y ) — anyone who is not shaved

by the barber shaves himself.

Transformation to the S-Form:

• C1 = shaves(X,X) ∨ shaves(barber, X),

• C2 = ¬shaves(barber, Y ) ∨ ¬shaves(Y, Y ).

Niech θ = {X/barber, Y/barber}.

C1θ = shaves(barber,barber)

C2θ = ¬shaves(barber,barber)

W wyniku rezolucji mamy:

shaves(barber,barber),¬shaves(barber,barber)
⊥

What is the conclusion then?

What does this solution consist in?
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Some Concluding Remarks on Resolution Method in FOPC

Since the resolvent is a logical consequence of parent clauses, we have

C1, C2 |= ⊥, i.e. the initial statement is in fact internally inconsistent.

To conclude, the Resolution Rule, augmented with Factorization Rule, con-

stitute a tool for theorem proving – the Resolution Theorem Proving Method

which is:

• based on refutation — an empty clause (always false) is to be derived

from assumptions completed with negated conclusion,

• sound — any conclusion derived with resolution (and factorization) is

sound,

• complete — in the sense that an empty clause can always be deduced

from an unsatisfiable set of clauses.

Resolution theorem proving is based on using the clausal form, i.e.

quantifier-free First-Order Logic CNF formula. Hence it is especially conve-

nient for systems which are or can be easily transformed into CNF.

In Knowledge-Based Systems resolution is applied for: applications:

• proving satisfaction of preconditions of rules in order to check if a se-

lected rule can be fired,

• proving attainability of goals – The Question-Answering Systems,

• checking for inconsistent rules.

Resolution is also the basic rule implemented in all PROLOG systems

A PROLOG program is a set of Horn clauses.
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Dual Resolution Method

1. We prove validity rather than unsatisfiability,

2. The formula is transformed into the Prenex Normal Form.

3. The matrix is transformed into DNF rather than CNF!

4. Next – dual skolemization – is applied; all universal quantifiers are elim-

inated; the procedure follows.

Let Q1X1 Q2X2 . . . QnXnΨ be the prenex normal form obtained from the

initial formula, where Qi, i = 1, 2, . . . , n are all the quantifiers and Ψ is the

quantifier-free matrix of the formula in DNF. Assume that Qi is the first uni-

versal quantifier encountered when scanning the prefix of the formula from

left to the right. Now there are two possibilities:

1) If no existential quantifier occurs before Qi then all the occurrences of

variable Xi in Ψ are replaced with a new constant c (c cannot occur in

Ψ) and QiXi is removed from the prefix.

2) If Qk1, Qk2, . . . , Qkj are all the existential quantifiers occurring before Qi,

then all the occurrences of Xi in Ψ are replaced with a term of the

form f(Xk1, Xk2, . . . , Xkj), where f is a new function symbol, and QiXi

is removed from the prefix.

In this way all the universal quantifiers are eliminated from the prefix, and,

since all the variables are existentially quantified, the prefix can be omitted.

Theorem 5 Let Ω be a logical formula and let Φ be its quantifier-free

minterm form. Ω is a tautology if and only if Φ is a tautology.
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Dual Resolution Rule

Let there be given two minterms, M1 = φ ∧ q1 and M2 = ϕ ∧ ¬q2. It is

important that q1 and ¬q2 are either complementary literals or there exists

a most general unifier σ, such that q1σ and q2σ are identical, an so q1σ and

¬q2σ are complementary. The bd-resolution rule (or bd-resolution principle)

allows to generate a new simple formula M = φσ ∧ ϕσ; the complementary

literals are removed.

A graphical presentation is given below:

φ ∧ q1 ϕ ∧ ¬q2

φσ ∧ ϕσ

σ σ

@
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��	

What is important and constitutes a principal difference with respect to clas-

sical resolution rule is that the disjunction of the parent minterms is a logical

consequence of the generated result; this is schematically presented below.
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φσ ∧ ϕσ |= φ ∧ q1 ∨ ϕ ∧ ¬q2

Definition 15 Dual Resolution Rule. Let M1 = φ ∧ q1 and M2 = ϕ ∧ ¬q2 are

two arbitrary minterms. Let σ be a mgu for q1 and q2. The Backward Dual

Resolution Rule is an inference rule of the form:

φ ∧ q1;ϕ ∧ ¬q2
φσ ∧ ϕσ

. (1)

Obviously, the produced formula is not a logical consequence of the parent

formulae. The rule works in a certain sense backwards – the disjunction

of the parent minterms is a logical consequence of the result, i.e. there is

M |= M1 ∨M2.

By analogy to classical resolution theorem proving, in theorem proving with

bd-resolution factorization is also a necessary additional rule to assure com-

pleteness.

Let M be any minterm such that two or more literals of M can be unified

with some most general unifier θ; in this case M is a logical consequence

of Mθ (Mθ |= M ) and Mθ is called a factor of M . The rule

M

Mθ

is called factorization. Factorization is a complementary, but necessary rule

to assure completeness of bd-resolution theorem proving.
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BD-Derivation

Now, let us define the way in which one can generate a sequence of bd-

resolvents starting from some initial normal formula

Ψ = ψ1 ∨ ψ2 ∨ . . . ∨ ψm (2)

i.e. the so-called bd-derivation. This is done in the following way.

Definition 16 A bd-derivation (or derivation, for short) of a simple formula

ψ from a normal formula Ψ given by (2) is any sequence of simple formulae

ψ1, ψ2, . . . , ψk, such that:

• for any j ∈ {1, 2, . . . , k} ψj is either a factor of some ψi or a bd-resolvent

of simple formulae ψi, ψi′, where either i ≤ j or ψi ∈ Ψ and i′ ≤ j or

ψi′ ∈ Ψ,

• ψ = ψk.

Formula ψ is said to be bd-derived from Ψ.

A formula ψ can be derived from some normal formula Ψ by generating

a sequence of simple formulae, such that any formula in the sequence is

either a factor of, or a bd-resolvent of some earlier generated formulae (or

the ones in Ψ); any formula in the sequence is said to be bd-derived from

Ψ, and if ψ appears as the last formula in the above sequence, then it is

bd-derived from Ψ as well. This will be denoted shortly as Ψ `BDR ψ. For

simplicity, in case of no ambiguity, we shall also say that ψ is derived from

Ψ and we shall write Ψ ` ψ.
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Exmaple Application of Dual Resolution

Consider the foollwoing set of rules:

UNIV_MEMBER(X) ∧ ENROLLED(X) ∧ HAS_BS_DEGREE(X) −→ STATUS(X,GraduateStudent)

UNIV_MEMBER(X) ∧ ENROLLED(X) ∧ ¬HAS_BS_DEGREE(X) −→ STATUS(X,Undergraduate)

UNIV_MEMBER(X) ∧ ¬ENROLLED(X) ∧ HAS_BS_DEGREE(X) −→ STATUS(X,S taff)

¬ENROLLED(X) ∧ ¬HAS_BS_DEGREE(X) −→ STATUS(X,N onAcademic)

¬UNIV_MEMBER(X) −→ STATUS(X,N onAcademic)

Using the bd-resolution one can produce most general formulae specifying

logical completeness of preconditions of the rules, i.e. showing that in any

case of input data at least one rule can be fired (as it covers the case).

From preconditions of the first and second rules, we obtain a bd-resolvent:

ψ1 = UNIV_MEMBER(X) ∧ ENROLLED(X).

From preconditions of first and third rule we have a bd-resolvent of the form:

ψ2 = UNIV_MEMBER(X) ∧ HAS_BS_DEGREE(X).

Note that ψ1 ∨ ψ2 specifies the positive cases covered by the system (aca-

demic persons). The system is specifically logically complete with respect

to ψ = ψ1 ∨ ψ2.

Now, apply the non-academic cases specification given by rules four and

five. For intuition, the above rules cover any non UNIV_MEMBER nor anyone

not ENROLLED and such that HAS_BS_DEGREE is not satisfied.

By applying bd-resolution to ψ1 and precondition of the fourth rule one ob-

tains UNIV_MEMBER(X) ∧ ¬HAS_BS_DEGREE(X), and by further bd-resolving

with ψ2 one obtains UNIV_MEMBER(X). Finally, after resolving the result with

the preconditions of the fifth rule one obtains the empty formula > (always

true). Hence, the disjunction of the preconditions of the above rules is tau-

tology.
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Soundness and Completeness of BD-Resolution

The following theorem assures soundness of bd-resolution.

Theorem 6 Soundness of bd-resolution rule. Let Ψ be a formula of the form

(2) and let ψi = φ ∧ q1 and ψj = ϕ ∧ ¬q2 be any two minterms of Ψ defined

by (1). Moreover, let ψ = φσ ∧ ϕσ be the bd-resolvent of them. Then

ψ |= ψi ∨ ψj (3)

and ψ |= Ψ.

Theorem 7 Soundness of bd-derivation. Let Ψ be a formula of the form

(2) and let ψ be a simple formula obtained by bd-derivation from Ψ. Then

ψ |= Ψ.

The theorem assuring completeness of bd-resolution can be stated as fol-

lows.

Theorem 8 Completeness Theorem Let Ψ be any normal formula, and

let φ be some simple formula. Assume that Ψ and φ have no variables in

common, i.e. FV (Ψ) ∩ FV (φ) = ∅1. If

φ |= Ψ, (4)

then there exists a bd-derivation of a simple formula ψ from Ψ, such that

φ |= ψ. (5)

Moreover, if φ is satisfiable, then there exists a substitution θ such that

[ψθ] ⊆ [φ], (6)

i.e. the derived formula ψ subsumes φ.
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