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Decision tree
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It comes from data

Outlook AirTemp Humidity Windy Water Forecast Enjoy

sunny warm normal TRUE warm same yes
sunny warm high TRUE warm same yes
rainy cold high TRUE warm change no
sunny warm high TRUE cool change no
overcast warm normal FALSE warm same yes
overcast cold high FALSE cool same no
... ... ... ... ... ... ...
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It comes from garbage
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So, how do we do this?

Outlook AirTemp Humidity Windy Water Forecast Enjoy

sunny warm normal TRUE warm same yes
sunny warm high TRUE warm same yes
rainy cold high TRUE warm change no
sunny warm high TRUE cool change yes
overcast warm normal FALSE warm same yes
overcast cold high FALSE cool same no
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Outcome from learning algorithm
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How to find the best tree?

The best tree
The best tree is the one that has best quality metric. For example it minimizes a
classification error E (Data) on data:

E (Data) =

It is NP-hard problem
Exponentially large number of possible trees makes decision tree learning
NP-hard.
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What should be the root?

The most important question
Not because the root of the tree is somehow special, but because it is not special
at all!

NP-hardness
We will focus on greedy approaches for building a tree.
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Greedy algorithm fro growing trees

Algorithm GrowTree(D,F ) – grow a feature tree from training data.

Input : data D; set of features F .
Output: feature tree T with labelled leaves.

1 if Homogeneous(D) then return Label(D);
2 S ←BestSplit(D,F ) split D into subsets Di according to the literals in S ;
3 for each i do
4 if Di 6= ∅ then Ti ←GrowTree(Di ,F ) ;
5 else Ti is a leaf labelled with Label(D);
6 end
7 return a tree whose root is labelled with S and whose children are Ti
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Impurity-based best split

Algorithm BestSplit-Class(D,F ) – find the best split for a decision tree.

Input : data D; set of features F .
Output: feature f to split on.

1 Imin ←1;
2 for each f ∈ F do
3 split D into subsets D1, . . . ,Dl according to the values vj of f ;
4 if Imp({D1, . . . ,Dl}) < Imin then
5 Imin ←Imp({D1, . . . ,Dl});
6 fbest ←f ;
7 end
8 end
9 return fbest

Imp({D1, . . . ,Dl}) =
l∑

j=1

|Dj |
|D|
Imp(Dj)
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Entropy interpretation

H(D) = −
∑
c∈C

p(c) log2 p(c)

Where:

D - Current dataset for which the entropy is calculated (for every node it
will be different set)

C - Set of class labels in dataset D

p(c) - Probability of observing item with class label c in D

Possible values of entropy
Entropy values are not between 0 and 0.5. The lower bound is 0, but the upper
bound depends on data and eqals:

log2(|D|)
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Entropy measures the diversity of data

Entropy wrt. class attribute
In DT generation problem we calculate entropy of the set with respect to the
class label, not features.
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Information gain

Gain(D) = Imp(D)−
∑

v∈Values(F )

|Dv |
|D|
Imp(Dv )

Entropy-based

H(D) = −
∑
c∈C

p(c) log2 p(c)

Gain(D) = H(D)−
∑

v∈Values(F )

|Dv |
|D|

H(Dv )
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Example

Outlook AirTemp Humidity Windy Water Forecast Enjoy

sunny warm normal TRUE warm same yes
sunny warm high TRUE warm same yes
rainy cold high TRUE warm change no
sunny warm high TRUE cool change yes
overcast warm normal FALSE warm same yes
overcast cold high FALSE cool same no

H(D) =

H(DAirTemp) =

H(DWindy ) =
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Gini index, not coefficient

Gini index
It says what is the probability of misclassification of data in a dataset if all
elements were classified incorrectly accorind to their distribution in dataset:

G (D) =
∑
c∈C

p(c)(1− p(c)) =
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Gini index measures the diversity of data

Gini wrt. class attribute
In DT generation problem we calculate impurity of the set with respect to the
class label, not features.
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Other impurity measures

0 0.5 1

0.5

Imp(ṗ)

ṗ

Comparison for two-valued class
From the bottom: the relative size of the minority class, min(ṗ, 1− ṗ); the Gini
index, 2ṗ(1− ṗ); entropy, −ṗ log2 ṗ − (1− ṗ) log2(1− ṗ) (divided by 2 so that it
reaches its maximum in the same point as the others); and the (rescaled) square
root of the Gini index,

√
ṗ(1− ṗ) – notice that this last function describes a

semi-circle.
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Data distribution and impurity measures

Suppose you have 10 positives and 10 negatives, and you need to choose
between the two splits [8+, 2−][2+, 8−] and [10+, 6−][0+, 4−].

You duly calculate the weighted average entropy (or information gain of
both splits and conclude that the first split is the better one.

Just to be sure, you also calculate the average Gini index, and again the
first split wins.

You then remember somebody telling you that the square root of the Gini
index was a better impurity measure, so you decide to check that one out as
well. Lo and behold, it favours the second split...! What to do?
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Data distribution and impurity measures

You then remember that mistakes on the positives are about ten times as costly
as mistakes on the negatives.

You’re not quite sure how to work out the maths, and so you decide to
simply have ten copies of every positive: the splits are now
[80+, 2−][20+, 8−] and [100+, 6−][0+, 4−].

You recalculate the three splitting criteria and now all three favour the
second split.
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Data distribution and impurity measures

You then remember that mistakes on the positives are about ten times as costly
as mistakes on the negatives.

You’re not quite sure how to work out the maths, and so you decide to
simply have ten copies of every positive: the splits are now
[80+, 2−][20+, 8−] and [100+, 6−][0+, 4−].

You recalculate the three splitting criteria and now all three favour the
second split.

Unbalanced datasets
Entropy and Gini index are sensitive to fluctuations in the class distribution,√
Gini isn’t.
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Splits on numerical values

Outlook AirTemp Humidity Windy Water Forecast Enjoy

sunny 30 normal TRUE warm same yes
sunny 35 high TRUE warm same yes
rainy 15 high TRUE warm change no
sunny 25 high TRUE cool change yes
overcast 28 normal FALSE warm same yes
overcast 17 high FALSE cool same no
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Overfitting in decision trees
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Overfitting in decision trees
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Limiting tree-depth
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Limiting tree-depth

Gneral idea
Stop splits after certain depth is reached. Decide what should be the maximum
depth using validation set!
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Minimum node size

Gneral idea
Do not split an intermediate node which contains too few data points. What
does it mean too few?
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Classification error

Gneral idea
Do not consider any split that does not cause a sufficient decrease in
classification error

Szymon Bobek (AGH-UST) Machine Learning 21 March 2017 34 / 49



ual-logo

Outline

1 What is a decsion tree

2 Tree growing

3 Split criterion based on impurity
Entropy
Gini index
Handling numerical values

4 Pruning
Pre-pruning/Early stopping
Post-prunning

5 Regression trees and clustering
Entropy and variance
KD trees

6 Summary

Szymon Bobek (AGH-UST) Machine Learning 21 March 2017 35 / 49



ual-logo

Do not stop too early
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XOR
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Reduced-error pruning

Algorithm PruneTree(T ,D) – reduced-error pruning of a decision tree.

Input : decision tree T ; labelled data D.
Output: pruned tree T ′.

1 for every internal node N of T , starting from the bottom do
2 TN ←subtree of T rooted at N;
3 DN ← {x ∈ D|x is covered by N};
4 if accuracy of TN over DN is worse than majority class in DN then
5 replace TN in T by a leaf labelled with the majority class in DN ;
6 end
7 end
8 return pruned version of T
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Ilustrative example
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Entropy as a variance of data

Lowering impurity is decreasing variance
Entropy can be considered variance of nominal data. Thus, in case of numerical
data, we can use variance as it is and proceed in order to reduce it.

In regression problems we can define the variance in the usual way:

Var(Y ) =
1
|Y |

∑
y∈Y

(y − ȳ)2

If a split partitions the set of target values Y into mutually exclusive sets
{Y1, . . . ,Yl}, the weighted average variance is then

Var({Y1, . . . ,Yl}) =
l∑

j=1

|Yj |
|Y |
Var(Yj) = . . . =

1
|Y |

∑
y∈Y

y2 −
l∑

j=1

|Yj |
|Y |

ȳ2j

The first term is constant for a given set Y and so we want to maximise the
weighted average of squared means in the children.
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Regression tree example
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Regression tree example
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KNN clustering with decision trees

Go down the tree to the leaf where the query point is classified

In the leaf, search for the nearest neighbour

Backtrack, and seach for new k-NN, but do not check points that are in
bounding boxes further away than our k-NN so far.

Prune whole branches that are further than k-NN
Szymon Bobek (AGH-UST) Machine Learning 21 March 2017 45 / 49



ual-logo

KNN clustering with decision trees

Pros and cons
It saves search time for large N

It is usually pointless for large D
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Summary

What we’ve learned?
Linear regression (prediction/regression)

Bias-variance tradeoff

Logistic regression (classification)

Support Vector Machines (classification)

Naive Bayes and Bayesian Networks (classification)

Decision trees (all of the above :) )

What could be next?
Learning from data streams (online learning)?

ANN and Deep learning?

Reinforcement learning?

Something else?
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Thank you!

Szymon Bobek
Institute of Applied Computer Science
AGH University of Science and Technology
21 March 2017
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