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Presentation Outline

@ Regression for classification
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How fitting a line can be used for classification
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How fitting a line can be used for classification
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How fitting a line can be used for classification
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Decision boundary
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Presentation Outline

e Logistic regression
@ Intuition for logistic regression
@ Cost function
@ Multi-class classification
e Categorical values
@ Precision/Recall/ROC
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Losing information when using sing only
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Logistic function

1
T 1+

Szymon Bobek (AGH-UST)

Machine Learning 21 March 2017 9 /65



Logistic function

f(x)=——=P(y=1/6,x)
1+e
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Outline

Q Logistic regression

@ Cost function
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Cost function

We train linear regression equation embedded into logistic function
We do not have numbers as an output, but classes instead.
Can we still use MSE for loss calculation?

e © e ¢

Can we use gradient/coordinate descent algorithms (is the cost function
convex)?

How to calculate the gradient?

@ What is our optimization objective?
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Probabilistic perspective

Optimization objective

@ Sigmoid function returns P(y = 1|6x)
@ Therefore P(y = —1|6x) =1 — P(y = 1|6x)
@ We want to select such 6, so that the probability that given training

example belongs to its true class is highest:
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X1 | x2 |y Max
4 8 1
5 4 -1
12 |10 | 1
17 | 3 -1
7 5 1
3 5 -1
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Maximize (log)likelihood

o We maximize P(y = 1/ — 1|x, 8) for every datapoint, so we have:

N
()51
mg)x,l:[l P(y\"|x\", 0)

2(6)

@ Machine learning loves logarithms, so instead we have:

N N
1)) = ()| x()
max /nll;[l P(y\"|x\",0) mgx;/nP(y [x'7,0)

1720)
o And finally:

N
_ _ (i) — 10
max (£(0) meax; []l[y +1]InP(yD = +1|x, 9)+

+ 1]y = —1]InP(y" = —1|x(">,0)]
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Simplifying things

o Py =+1x.6) = - Lor:

° P(y=-1x,0) =1- 1+e];9Tx =
o Iy =-1]=1-1[y = +1]

@ Therefore:

N
_ _ CIRING
max £4(0) meax; []l[y +1)InP(y D = +1)xD, 9)+

+ 1y = ~1JinP(y) = ~1x,0)] =
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Simplifying things

N —ox)
1 e 0x'
mgax%(@) = max E_l l]l[y = +1]/nm +1[y = 1]In1+e_gx(,.)] =
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Calculating gradient

@ Log likelihood to maximize: |
(o) = Z:N:I —(1—1[y" = +1])07x(") — In(1 + e*GTX('))

) . _oue)
@ Gradient for one training example: o9, =
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Using gradient

o Gradient:

oLe(6)
0;

Features

@ Log likelihood function is convex, so
there is one optimum

@ We can use gradient ascent/descent
or coordinate ascent/descent without

any problems

@ We can use Lasso and regularization
for linear regression as well
v

N

:Z(]l[ D = 41] -
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Outline

Q Logistic regression

@ Multi-class classification
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What if we have more than one class?
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What if we have more than one class?
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One vs. All
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One vs. One
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Softmax regression

@ We can express this probability in terms of softmax function:

e(e(k)TX)

P(y") = k|x(: ) = _
(y |X ) ZJK:1 (097 x)

@ Interesting property:
(0 =) Tx)

SO e(B0 =) Tx0)

e(g(k)TX(i))e(_wa(i))

Py = k|x;0) =

ZJ'K:1 (0T x() g(—1p T x(D)

(01T x00)

K _(g0Tx)
Zj:l el )
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Softmax regression

@ So in our case:

1 [0
hg(X) = e(G(UTX) T 6(9(2)TX) 6(9(2)Tx)
o And finally:
1 (606 Tx)
ho(x) = (0 —0@)TxD) | o(0Tx) e(07x)

S(6W —6@) T
— | Tree@—e@) M)
1
1+e((0M —0C) T x()

1
1+4e((0D) —0C) T x()
1

1+4e((0M —0C) T x(1)
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Softmax regression

o Hypothesis:

P(y = 1|x;0) !

P(y = 2|x;0) 1 (67" x)
ha(x) = : = ZK e(GU)Tx) :
: i1 :

P(y = K|x;0) (60997 x)

o Objective to maximize:

J(0) = lii}{ }mp( = K|x 9)1

i=1 k=0

@ Gradient:

NE

Vo J(0) = [x(i) (1{y(i) =k} — P(y") = k|x(i);6’)>]

i=1
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Softmax regression — characteristics

@ Convex, so there is no local optima

@ Hessian is singular/non-invertible, so only gradient-based optimization is
valid

@ Returns normalized probability

@ Independence assumption between predictions. If the classes are mutually
exclusive, use it, otherwise use K-binary classifiers
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Outline

Q Logistic regression

@ Categorical values
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What if we had categorical values?
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What if we had categorical values?
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What if we had categorical values?
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What if we had categorical values?

@ It is not only a probelm of }
logistic regression, but also <t
linear regression [

@ Distance based algorithms
also suffer from this problem:

e Distance from PL to SL is
one

o Distance form PL to CZ is Te
three.. 1

>y

C
0

. . Cz ES MX PL SL UA UK
@ Soution: one-hot encoding AF
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One-hot encoding

Nationality: Distance:

HE ' - B

AF CZ UK US

Nationality: Distance:
AF Cz
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Outline

Q Logistic regression

@ Precision/Recall/ROC
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Precision and recall

relevant elements

false negatives true negatives
® o o (o}
How many selected How many relevant
items are relevant? items are selected?
Precision = Recall = ——

D

selected elements
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Area under the ROC
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Area under the ROC
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Perfect classifier

f(x)=——=P(y=1/6,x)
1+e
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Presentation Outline

© Support Vector Machine
@ Basic linear algebra
@ Intuition behind SVM
@ Finding the margin
@ Optimizing cost function
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W(XLXZ)
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Vector direction

X%
Tl T

1 The direction of w(x,x) is vector 3

T Nice property: |ul=1
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Large margin classifier
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Large margin classifier

A ol

5X1+4
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Large margin classifier

A /
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How do we find a margin

1
f(xl,xz)zxzfg)"l*3

A
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do we find a margin

1
—Xx,+4

X,= 5

X
L]

A /

Szymon Bobek (AGH-UST) Machine Learning 21 March 2017 37 /65



do we find a margin
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do we find a margin
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How do we find a margin
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How do we find a margin

f(xl’x2)=xzfxl

Bl
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What has an impact on margin

Find magnitude of m

@ Vector that defines
hyperplane is
perpendicular to it (by
definition)

@ Define direction of
that vector (m has the
same direction)

o Multiply it by m
(direction vectors has
norm equal to one)

@ Now we have the m

vector, and we can
calculate its norm.
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Let us be more general
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Let us be more general

0,x,+0,x,+0,=0
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Let us be more general

0,x,+0,x,+0,=0

o~
5
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Let us be more general

0,x,+0,x,+0,=0
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Let us be more general

- 0, 6, w

m=m\-—y, 75 /=M

<1 (N Tl =" Tl
1l i=se

0,x,+0,x,+0,=0

() [ ] ° 0,x,+0,x,+0,=1

!
—-——
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w

e m=m
Twl]
e =x+m
@ xp belongs to 'upper’ hyperplane, so: w- 25+ 6y =1
o Replace zp with: w-(xp+m)+6o=1
o Replace i with: w - (Xp + m”—:’/H) +6=1
o Expand:
W
w- (X + m——:)+ 6y =1
[will

—

W~fo+mu+90 =1

[[wll

2
w5+ ml 4 gy 1

4l

—_———
Lower hyperplane, so =—1
2

[[wll
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Summing up
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Summing up

f(xl’x2)=xzfxl

=¥
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Wouldn't logistic regression do the same?

>
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Cost function

@ To achieve, what we said before, instead of using MSE, or £/, we use hinge
loss:

£(ho(x)) = max(0,1 — y - hy(x))
where y is the target label (+1 or -1), and hg(x)s is the predicted label.

o Additionally we add the penalty on margin to cost function. Therefore, the
cost function looks as follows:

N
: . 1
J(9) = CZ max(0,1 — y(’) . hg(X(’))) + 592
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How to optimize cost function

Lagrange multipliers

See: https:

//www.svm-tutorial.com/2016/09/duality-lagrange-multipliers/

Coordinate descent

But, the cost function is not differentiable...

Szymon Bobek (AGH-UST)
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02
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SVM and normalization

Szymon Bobek (AGH-UST)

Hope this time you've
normalized features
before running SVM?

| thought it was

only...

Machine Learning

SVM puts penalty on the
value of the 6

Value of 6 depends on the
magnitude of gradient

We multiply each gradient by
xj('), making 6 dependent on

the magnitude of xj(o

The penalty is therefore
dependent on the magnitude
of x... :/
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Presentation Outline

O Kernels
@ Intuition for kernels
@ Dual representation
@ Kernels
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Linearly non

separable datasets
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Linearly non

separable datasets

Dataset: N=800, '0': 0.71375 '1": 0.28625
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Transformation from lower to higher dimension

Y Label

Data projected to R*2 (nonseparable)

15
.
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Transformation from lower to higher dimension

2qe1Z

Data in R~ 3 (separable w/ hyperplane)

0.0 —05 0.0 0.5 10
X Label

Szymon Bobek (AGH-UST

Y Label

Data projected to R™2 (hyperplane projection shown)
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We've already done that

©

F(X)=0,+0,x+0,X>+...+60, X"

Price ($)

|
sg. ft.

X
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Let's move into higher dimension

Let us assume that the original case id 2D x = (x1, x2)

Transform ¢(x) = (1,x2, X3, v2x1, V2x2, V/2x1X2)

From 2D, we are now in 6D

Transform ¢(x) = (x1x1, X1X2, X1X3, X2 X1, X2 X2, X2X3, X3X1, X3X2, X3X3)

From 3D, we are now in 9D

® © © ¢ o ¢

And so on and on...

There are some consequences, though

@ The transform takes resources (both CPU and memory)

@ The optimization problem becomes more complex (N dimensions means N
0-s to learn
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Outline

O Kernels

@ Dual representation
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Simple Perceptron vs Dual Perceptron

@ Imagine binary classification problem, between classes y € {—1,1}
@ The classification is performed by the linear model of form: y(x) = sign(6x)

Algorithm 1: Simple perceptron
Data: D - dataset of (x,y)
while not converged do
forall (x\), y()) € D do
if y()y() <0 then
‘ 0 =0+ \yx;
end
end
end

N o Ogbs W N =

After the algorithm has converged, we can say how many times each example
was misclassified during learning, hence:

N
6=3 alyix0
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Simple Perceptron vs Dual Perceptron

@ Imagine binary classification problem, between classess y € {—1,1}
@ 0 can be substituted with 6 = va o)y (D x(0)

o The classification is performed by the linear model of form: y(x) = sign(6x)

Algorithm 2: Dual perceptron

Data: D — dataset of (x, y)
while not converged do
forall (x(), y()) € D do
if y()y() <0 then
| a=a+1;
end
end
end

N o s W N =
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Simple SVM vs Dual SVM

@ The cost function:

N
: ; 1
J(0) = CZ max(0,1 — y@ . hy(xD)) + 592

@ Looking at the hinge loss, we can reformulate it in terms of Lagrangian:
J(9) = 79T9 st. yDh(xD)y>1foriel...N
J(6) = feTe st. yDExD 4 p)y>1foricl...N

@ Now, substitute to Lagrange function:

L£(0,b, ) = Te Za [ +b)—1}
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Simple SVM vs Dual SVM
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Derivatives of Lagrangian

L£(0,b,a) = 7079 Za [ 9x)+b)—1}

@ With respect to 6:

N
VoL =0-"3 allyix
i=1

@ So setting gradient to 0, we have:

o With respect to b:

@ So setting gradient to 0, we have:

N
3 allyl) — g
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Putting it altogether

L(8, b,a) = —979 Za [ 9x<)+b)—1}

() 6 = ZIN 1 a(’)y(’)x(’)
° Z L aly() =0

L(0,b,0) = ol —
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Putting it altogether

N
1 ST o .
£(0,b,0) = 5079 =Y a®) [y('>(9x('> +b)— 1}
i=1
00— Z,N : a(i) yu)x(f)
° Z L aldy() =0

£(6, b, ) Za() 2zzy FONONONOLNY

i=1 j=1
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N
1 ST o .
£(0,b,0) = 5079 =Y a®) [y('>(9x('> +b)— 1}
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Putting it altogether

N
L(6, b,a) = %979 -3 al) [y(”(ax(") +b) — 1}

i=1

<] 0 = Z’N 1 a(’)y(’)x(’)
° Z Loy =0

N N
ZZ FONONONGROLNT

N
) = Z ol —

N \

Subjected to:
e ald>0

o TV oy =g
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Using it with higher dimensions

Za()_,zzy() () () ) 5 (DT 5 ()

i=1 j=1
Subjected to:
e o) >0

o TV oy =g
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Using it with higher dimensions

,;(a):z _,Zzy YD), ,0)

Subjected to:
e o) >0

o TV oy =g
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What did we learn

@ We know that we can represent our optimization problem in terms of dot
product of training examples, not 6.

@ We know that dot product is easy to compute.

@ We know, that finding non linear decision boundary is possible by

transforming feature space to higher dimension.

@ On the other hand we know, that moving into higher dimension is bad.

@ So what did we learn?
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Wrap up

What did we learn

@ We know that we can represent our optimization problem in terms of dot
product of training examples, not 6.

@ We know that dot product is easy to compute.

@ We know, that finding non linear decision boundary is possible by
transforming feature space to higher dimension.

@ On the other hand we know, that moving into higher dimension is bad.
@ So what did we learn?

@ We probably could do in the future better if we only knew what we
did :)
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The kernel trick

WI{IAT IFI1

=

YOU CAN CALCULA"I'-'E DOT PRODUCT
OF HIGHER DIMENSION FEATURES
IN LOWER DIMENSION SPACE




o For transform:
d(x) = (x1x1, X1X2, X1X3, X0 X1, X2 X2, X2 X3, X3X1, X3X2, X3X3)
we have the following kernel:
K(x,x") = (x-x')?
o Example. Assume x(!) = (1,2,3) and x(®? = (4,5,6)

¢
¢
<¢(x<1)), ¢(x<1>)> = 16 + 40 + 72 + 40 + 100 + 180 + 72 + 180 + 324
— 1024

xM) =(1,2,3,2,4,6,3,6,9)

(
(x1?)) = (16,20, 24, 20, 25, 30, 24, 30, 36)

o Kernel:
K(xM, x®) = (4410 + 18)% = 322 = 1024
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@ For transform

P(x) = (17X17X2,\[X1’ V2x2,V2 \[X1X2)
we have the following kernel:
K(x,x")=(1+ XTX')2

o Example. Assume x(1) = (1,2) and x(?) = (3,4)

p(xW) = (1,1,4,1v2,2v2,1-2V2)
o(x?) = (1,9,16,3v2,4v2,12V2)
<¢(X(1))7 ¢(x(1))> =1+9+64-+6+16+48 =144

= 1024

(
(

o Kernel:
K(xW, x?) = (1 +3+8)% = 122 = 144
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How far can we go?

. 72
o Let us take Gaussian kernel: K(x,x’) = e~ 7=~

. . k
@ e can be expanded into Taylor series: e* = Ziio o

@ So, let's assume v = % expand and substitute into Taylor series:

o 3|12

_ e—X2+<X,X/>—XI2
32y i <X, X/>k
e e 7/('
k

@ So the transform function is (1D case):
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How far can we go?
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Using it in dual representation

Za()_,zzy() () () ) 5 (DT 5 ()

i=1 j=1
Subjected to:
e o) >0

o TV oy =g
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Using it in dual representation

L(a) = Z _,Zzy )y W) ) (/)K( ), ())

i=1 i=1 j=1
Subjected to:
e o) >0

o TV oy =g
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Constructing kernels

@ Not every function is a kernel (see Mercer's theorem). To be one, it has to
be:
Q symmetric: K(x,x") = K(x',x)
© positive semidefinite: Y77, 377, K(xi, xj)cic; > 0
@ New kernels can be constructed as combination of already known kernels:
Techniques for Constructing New Kernels.

Given valid kernels k; (x. x’) and ko (x. x'), the following new kernels will also

be valid:
k(x,x') = chi(x.x") (6.13)
k(x,x') = f)ki(xx)f(x) (6.14)
kGex') = q(ki(x,x)) (6.15)
k(x,x') = exp(ki(x,x)) (6.16)
k(x.x') = ki(x,x") + ko(x,x") (6.17)
k(x,x') = ki(x,x)ka(x,x) (6.18)
kx.xX) = ks (p(x). d(x') (6.19)
k(x,x) = xTAx' (6.20)
k(x,X') = ka(xa,Xx5) + ki(xp,%}) 6.21)
k(x.x') = ka(%a, x0) k(x5 x;) (6.22)

where ¢ > 0 is a constant, f(-) is any function, ¢(-) is a polynomial with nonneg-
ative coefficients, ¢)(x) is a function from x to R, k(. ) is a valid kernel in
RM, Aisa symmetric positive semidefinite matrix, x, and x,, are variables (not
necessarily disjoint) with x = (x,,x;). and k, and k;, are valid kernel functions
over their respective spaces.
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