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Cost function

We train linear regression equation embedded into logistic function

We do not have numbers as an output, but classes instead.

Can we still use MSE for loss calculation?

Can we use gradient/coordinate descent algorithms (is the cost function
convex)?

How to calculate the gradient?

What is our optimization objective?
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Maximize (log)likelihood

We maximize P(y = 1/− 1|x , θ) for every datapoint, so we have:

max
θ

N∏

i=1

P(y (i)|x (i), θ)
︸ ︷︷ ︸

ℓ(θ)

Machine learning loves logarithms, so instead we have:

max
θ

ln

N∏

i=1

P(y (i)|x (i), θ) = max
θ

N∑

i=1

lnP(y (i)|x (i), θ)
︸ ︷︷ ︸

ℓℓ(θ)

And finally:

max
θ

ℓℓ(θ) = max
θ

N∑

i=1

[
1[y = +1]lnP(y (i) = +1|x (i), θ)+

+ 1[y = −1]lnP(y (i) = −1|x (i), θ)
]
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Simplifying things

P(y = +1|x , θ) = 1

1+e−θT x

P(y = −1|x , θ) = 1− 1

1+e−θT x
=

1[y = −1] = 1− 1[y = +1]
Therefore:

max
θ

ℓℓ(θ) = max
θ

N∑

i=1

[
1[y = +1]lnP(y (i) = +1|x (i), θ)+

+ 1[y = −1]lnP(y (i) = −1|x (i), θ)
]
=
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Simplifying things

max
θ

ℓℓ(θ) = max
θ

N∑

i=1

[
1[y = +1]ln

1

1+ e−θx
(i)

+ 1[y = −1]ln e−θx
(i)

1+ e−θx
(i)

]
=
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Calculating gradient

Log likelihood to maximize:

ℓℓ(θ) =
∑N

i=1−(1− 1[y (i) = +1])θT x (i) − ln(1+ e−θ
T x (i)

)

Gradient for one training example: ∂ℓℓ(θ)
∂θj

=
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Softmax regression

We can express this probability in terms of softmax function:

P(y (i) = k |x (i); θ) = e(θ
(k)⊤x)

∑K

j=1 e
(θ(j)⊤x)

Interesting property:

P(y (i) = k |x (i); θ) = e((θ
(k)−ψ)⊤x (i))

∑K

j=1 e
((θ(j)−ψ)⊤x (i))

=
e(θ

(k)⊤x (i))e(−ψ
⊤x (i))

∑K

j=1 e
(θ(j)⊤x (i))e(−ψ

⊤x (i))

=
e(θ

(k)⊤x (i))

∑K

j=1 e
(θ(j)⊤x (i))

.
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Softmax regression

So in our case:

hθ(x) =
1

e(θ
(1)⊤x) + e(θ

(2)⊤x)

[
e(θ

(1)⊤x)

e(θ
(2)⊤x)

]

And finally:

hθ(x) =
1

e((θ
(1)−θ(2))⊤x (i)) + e(~0

⊤x)

[
e((θ

(1)−θ(2))⊤x)

e(
~0⊤x)

]

=




e((θ
(1)

−θ
(2))⊤x)

1+e((θ
(1)

−θ(2))⊤x(i))

1

1+e((θ
(1)

−θ(2))⊤x(i))




=

[
1− 1

1+e((θ
(1)

−θ(2))⊤x(i))

1

1+e((θ
(1)

−θ(2))⊤x(i))

]

Szymon Bobek (AGH-UST) Machine Learning 21 March 2017 23 / 65



ual-logo

Softmax regression

Hypothesis:

hθ(x) =




P(y = 1|x ; θ)
P(y = 2|x ; θ)

...
P(y = K |x ; θ)


 =

1
∑K

j=1 e
(θ(j)⊤x)




e(θ
(1)⊤x)

e(θ
(2)⊤x)

...

e(θ
(K)⊤x)




Objective to maximize:

J(θ) =

[
m∑

i=1

1∑

k=0

1
{
y (i) = k

}
lnP(y (i) = k |x (i); θ)

]

Gradient:

∇θ(k)J(θ) =
m∑

i=1

[
x (i)

(
1{y (i) = k} − P(y (i) = k |x (i); θ)

)]
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Softmax regression – characteristics

Convex, so there is no local optima

Hessian is singular/non-invertible, so only gradient-based optimization is
valid

Returns normalized probability

Independence assumption between predictions. If the classes are mutually
exclusive, use it, otherwise use K-binary classifiers
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Precision and recall
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Summing up

~m = m ~w
‖w‖

~z0 = ~x0 + ~m
x0 belongs to ’upper’ hyperplane, so: ~w · ~z0 + θ0 = 1
Replace z0 with: ~w · (~x0 + ~m) + θ0 = 1
Replace ~m with: ~w · (~x0 +m ~w

‖w‖ ) + θ0 = 1

Expand:

~w · (~x0 +m
~w

‖w‖ ) + θ0 =1

~w · ~x0 +m
~w · ~w
‖w‖ + θ0 =1

~w · ~x0 +m
‖w‖2
‖w‖ + θ0 =1

~w · ~x0 + θ0︸ ︷︷ ︸
Lower hyperplane, so =−1

+m‖w‖ =1

m =
2

‖w‖
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Cost function

To achieve, what we said before, instead of using MSE, or ℓℓ, we use hinge
loss:

ℓ(hθ(x)) = max(0, 1− y · hθ(x))
where y is the target label (+1 or -1), and hθ(x)s is the predicted label.

Additionally we add the penalty on margin to cost function. Therefore, the
cost function looks as follows:

J(θ) = C

N∑

i

max(0, 1− y (i) · hθ(x (i))) +
1

2
θ2
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How to optimize cost function

Lagrange multipliers

See: https:
//www.svm-tutorial.com/2016/09/duality-lagrange-multipliers/

Coordinate descent
But, the cost function is not differentiable...

Szymon Bobek (AGH-UST) Machine Learning 21 March 2017 44 / 65



ual-logo

SVM and normalization

SVM puts penalty on the
value of the θ

Value of θ depends on the
magnitude of gradient

We multiply each gradient by

x
(i)
j , making θ dependent on

the magnitude of x
(i)
j

The penalty is therefore
dependent on the magnitude
of x ... :/
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Let’s move into higher dimension

Getting high is easy ;)

Let us assume that the original case id 2D x = (x1, x2)

Transform φ(x) = (1, x21 , x
2
2 ,
√
2x1,

√
2x2,

√
2x1x2)

From 2D, we are now in 6D

Transform φ(x) = (x1x1, x1x2, x1x3, x2x1, x2x2, x2x3, x3x1, x3x2, x3x3)

From 3D, we are now in 9D

And so on and on...

There are some consequences, though

The transform takes resources (both CPU and memory)

The optimization problem becomes more complex (N dimensions means N
θ-s to learn
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Simple Perceptron vs Dual Perceptron

Imagine binary classification problem, between classes y ∈ {−1, 1}
The classification is performed by the linear model of form: ŷ(x) = sign(θx)

Algorithm 1: Simple perceptron

Data: D – dataset of (x , y)
1 while not converged do
2 forall (x (i), y (i)) ∈ D do
3 if ŷ (i)y (i) ≤ 0 then
4 θ = θ + λy (i)x (i);
5 end
6 end
7 end

Conclusion
After the algorithm has converged, we can say how many times each example
was misclassified during learning, hence:

θ =

N∑

i

α(i)y (i)x (i)
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Simple Perceptron vs Dual Perceptron

Imagine binary classification problem, between classess y ∈ {−1, 1}
θ can be substituted with θ =

∑N

i α(i)y (i)x (i)

The classification is performed by the linear model of form: ŷ(x) = sign(θx)

Algorithm 2: Dual perceptron

Data: D – dataset of (x , y)
1 while not converged do
2 forall (x (i), y (i)) ∈ D do
3 if ŷ (i)y (i) ≤ 0 then
4 α = α+ 1;
5 end
6 end
7 end
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Simple Perceptron vs Dual Perceptron

Imagine binary classification problem, between classess y ∈ {−1, 1}
θ can be substituted with θ =

∑N

i α(i)y (i)x (i)

The classification is performed by the linear model of form:

ŷ(x) = sign
(∑N

i α(i)y (i)x (i) · x
)

Algorithm 3: Dual perceptron

Data: D – dataset of (x , y)
1 while not converged do
2 forall (x (i), y (i)) ∈ D do
3 if ŷ (i)y (i) ≤ 0 then
4 α = α+ 1;
5 end
6 end
7 end
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Simple SVM vs Dual SVM

The cost function:

J(θ) = C

N∑

i

max(0, 1− y (i) · hθ(x (i))) +
1

2
θ2

Looking at the hinge loss, we can reformulate it in terms of Lagrangian:

J(θ) =
1

2
θT θ s.t. y (i)hθ(x

(i)) ≥ 1 for i ∈ 1 . . .N

J(θ) =
1

2
θT θ s.t. y (i)(θx (i) + b) ≥ 1 for i ∈ 1 . . .N

Now, substitute to Lagrange function:

L(θ, b, α) = 1
2
θT θ −

N∑

i=1

α(i)
[
y (i)(θx (i) + b)− 1

]
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Derivatives of Lagrangian

L(θ, b, α) = 1
2
θT θ −

N∑

i=1

α(i)
[
y (i)(θx (i) + b)− 1

]

With respect to θ:

∇θL = θ −
N∑

i=1

α(i)y (i)x (i)

So setting gradient to 0, we have:

θ =

N∑

i=1

α(i)y (i)x (i)

With respect to b:

∂L
∂b

= −
N∑

i=1

α(i)y (i)

So setting gradient to 0, we have:

N∑

i=1

α(i)y (i) = 0
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Putting it altogether

What we have

L(θ, b, α) = 1
2
θT θ −

N∑

i=1

α(i)
[
y (i)(θx (i) + b)− 1

]

θ =
∑N

i=1 α
(i)y (i)x (i)

∑N

i=1 α
(i)y (i) = 0

L(θ, b, α) =
N∑

i=1

α(i) −
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Putting it altogether

What we have

L(θ, b, α) = 1
2
θT θ −

N∑

i=1
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θ =
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i=1 α
(i)y (i) = 0

L(θ, b, α) =
N∑

i=1

α(i) − 1
2

N∑

i=1
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y (i)y (j)α(i)α(j)x (i)T x (j)
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Putting it altogether

What we have

L(θ, b, α) = 1
2
θT θ −

N∑

i=1

α(i)
[
y (i)(θx (i) + b)− 1

]

θ =
∑N

i=1 α
(i)y (i)x (i)

∑N

i=1 α
(i)y (i) = 0

L(α) =
N∑

i=1

α(i) − 1
2

N∑

i=1

N∑

j=1

y (i)y (j)α(i)α(j)x (i)T x (j)

Subjected to:

α(i) ≥ 0
∑N

i=1 α
(i)y (i) = 0

Szymon Bobek (AGH-UST) Machine Learning 21 March 2017 56 / 65



ual-logo

Using it with higher dimensions

L(α) =
N∑

i=1

α(i) − 1
2

N∑

i=1

N∑

j=1

y (i)y (j)α(i)α(j)x (i)T x (j)

Subjected to:

α(i) ≥ 0
∑N

i=1 α
(i)y (i) = 0
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Using it with higher dimensions

L(α) =
N∑

i=1

α(i) − 1
2

N∑

i=1

N∑

j=1

y (i)y (j)α(i)α(j)z (i), z (j)

Subjected to:

α(i) ≥ 0
∑N

i=1 α
(i)y (i) = 0
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Wrap up

What did we learn
We know that we can represent our optimization problem in terms of dot
product of training examples, not θ.

We know that dot product is easy to compute.

We know, that finding non linear decision boundary is possible by
transforming feature space to higher dimension.

On the other hand we know, that moving into higher dimension is bad.

So what did we learn?
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Wrap up

What did we learn
We know that we can represent our optimization problem in terms of dot
product of training examples, not θ.

We know that dot product is easy to compute.

We know, that finding non linear decision boundary is possible by
transforming feature space to higher dimension.

On the other hand we know, that moving into higher dimension is bad.

So what did we learn?

We probably could do in the future better if we only knew what we
did :)
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Example

For transform:

φ(x) = (x1x1, x1x2, x1x3, x2x1, x2x2, x2x3, x3x1, x3x2, x3x3)

we have the following kernel:

K (x , x ′) = (x · x ′)2

Example. Assume x (1) = (1, 2, 3) and x (2) = (4, 5, 6)

φ(x (1)) = (1, 2, 3, 2, 4, 6, 3, 6, 9)

φ(x (2)) = (16, 20, 24, 20, 25, 30, 24, 30, 36)
〈
φ(x (1)), φ(x (1))

〉
= 16+ 40+ 72+ 40+ 100+ 180+ 72+ 180+ 324

= 1024

Kernel:
K (x (1), x (2)) = (4+ 10+ 18)2 = 322 = 1024
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Example

For transform
φ(x) = (1, x21 , x

2
2 ,
√
2x1,

√
2x2,

√
2x1x2)

we have the following kernel:

K (x , x ′) = (1+ xT x ′)2

Example. Assume x (1) = (1, 2) and x (2) = (3, 4)

φ(x (1)) = (1, 1, 4, 1
√
2, 2

√
2, 1 · 2

√
2)

φ(x (2)) = (1, 9, 16, 3
√
2, 4

√
2, 12

√
2)

〈
φ(x (1)), φ(x (1))

〉
= 1+ 9+ 64+ 6+ 16+ 48 = 144

= 1024

Kernel:
K (x (1), x (2)) = (1+ 3+ 8)2 = 122 = 144
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How far can we go?

Let us take Gaussian kernel: K (x , x ′) = e−γ‖x−x′‖2

e can be expanded into Taylor series: ex =
∑∞

k=0
xk

k!

So, let’s assume γ = 1
2
, expand and substitute into Taylor series:

e−
1
2
‖x−x′‖2 = e−x2+〈x,x′〉−x′2

= e−x2ex
′2

∞∑

k

〈x , x ′〉k
k!

So the transform function is (1D case):
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How far can we go?

Let us take Gaussian kernel: K (x , x ′) = e−γ‖x−x′‖2

e can be expanded into Taylor series: ex =
∑∞

k=0
xk

k!

So, let’s assume γ = 1
2
, expand and substitute into Taylor series:

e−
1
2
‖x−x′‖2 = e−x2+〈x,x′〉−x′2

= e−x2ex
′2

∞∑

k

〈x , x ′〉k
k!

So the transform function is (1D case):

φ(x) =
[
e−x2 ,

√
e−x2

1!
x ,

√
e−x2

2!
x2,

√
e−x2

3!
x3, . . .

]
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How far can we go?
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Using it in dual representation

L(α) =
N∑

i=1

α(i) − 1
2

N∑

i=1

N∑

j=1

y (i)y (j)α(i)α(j)x (i)T x (j)

Subjected to:

α(i) ≥ 0
∑N

i=1 α
(i)y (i) = 0
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Using it in dual representation

L(α) =
N∑

i=1

α(i) − 1
2

N∑

i=1

N∑

j=1

y (i)y (j)α(i)α(j)K (x (i), x (j))

Subjected to:

α(i) ≥ 0
∑N

i=1 α
(i)y (i) = 0
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Constructing kernels

Not every function is a kernel (see Mercer’s theorem). To be one, it has to
be:
1 symmetric: K(x , x ′) = K(x ′

, x)
2 positive semidefinite:

∑n

i=1

∑n

j=1 K(xi , xj)cicj ≥ 0

New kernels can be constructed as combination of already known kernels:
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