
Semantic Web Rule
Languages

Tutorial at CSWS2009
29th Aug, 2009

Jeff Z. Pan, Yuting Zhao, Stuart Taylor
Department of Computing Science

University of Aberdeen, UK

Tutorial Overview

• This tutorial will address
– Why rules are needed in the Semantic Web

– How does OWL 2 relate to Semantic Web rules

– How to use ontologies and rules

– How to reason with ontologies and rules

Tutorial Outline

• Motivation

• OWL 2 and Semantic Web rules
– The big picture

• Some technical discussions on Semantic Web rules

• Practical: Hands-on Session

OWL: Standard Semantic Web
Ontology Language

• OWL DL is decidable
– Efficient reasoning engines (for ontologies with reasonable

sizes)

– for standard reasoning tasks (in particular TBox reasoning)

• OWL DL is expressive enough to cover a wide range of
applications
– Semantic Web/Grid, eScience, multimedia, software

engineering, medicine, biology, agriculture, geography, space,
manufacturing, defence, …

[First OWLED Workshop, 2005
Photo Credit: Ian Horrocks]

Why Rules in the Semantic Web
• Expressive power: there are statements that can not be

represented by OWL alone
– Beyond tree / forest shape model

– Provides expressive query language for ontologies

– non-monotonic reasoning, with non-classical negation

• People might be more familiar with implementing rule
engines then ontology reasoners

• It might be easier for users to write “if … then …” rules
than OWL axioms

Therefore, we need both ontologies and rules.

The Early Days of KR:
Rule-Based Formalisms

• Rules provide a natural way of modelling “reason-result”
knowledge

• General form of a rule:

Body ⇒ Head
– Means “if Body, then Head“

• Example:

hasFather(?x,?y) ⇒ hasChild(?y,?x)

Example: Why OWL not Enough
• Example: how to represent hasUncle

– As a class (OWL can represent)
Class(Uncle complete restriction(

inverse(hasBrother) Parent))

– As a property (OWL can not represent)
hasParent(?x,?p), hasBrother(?p,?b) ⇒ hasUncle(?x,?b)

ABox: hasBrother(Tom, Tim), hasParent(Mary,Tom)

A Different Story in OWL 2
• OWL 2 allows property chains

ObjectPropertyChain(P1, …, Pn)

• Therefore the rule
hasParent(?x,?p), hasBrother(?p,?b) ⇒ hasUncle(?x,?b)

can now be represented as

SubObjectPropertyOf(

ObjectPropertyChain(hasParent hasBrother) hasUncle)

Question: What are the impacts of OWL 2 to SW rule
languages?

Tutorial Outline

• Motivation

• OWL 2 and Semantic Web rules
– The big picture

• More technical discussions on Semantic Web rules

• Practical: Hands-on Session

Why OWL is Not Enough
(or Why OWL 2)

• Too expensive to reason with
– High complexity: NEXPTIME-complete

– The most lightweight sublanguage OWL-Lite is NOT lightweight

– Some ontologies only use some limited expressive power; e.g. The
SNOMED (Systematised Nomenclature of Medicine) ontology

• Not expressive enough; e.g.
– No user defined datatypes [Pan 2004; Pan and Horrocks, 2005]

– No metamodeling support [Pan 2004; Pan, Horrocks, Schreiber, 2005]

– Limited property support [Horrocks et al., 2006]

What is OWL 2
• A new version of OWL

• Main goals:

1. To define “profiles” of OWL that are:

– smaller, easier to implement and deploy

– cover important application areas and are easily understandable
to non-expert users

2. To add a few extensions to current OWL that are useful, and is
known to be implementable

– user defined datatypes, metamodeling, more property constructors

New Expressiveness in OWL 2

• New expressive power on properties
– qualified cardinality restrictions, e.g.:

ObjectMinCardinality(2 hasFriend Scottish)
– property chain inclusion axioms, e.g.:

SubObjectPropertyOf(ObjectPropertyChain(parent brother) uncle)
– local reflexivity restrictions, e.g.:

ObjectExistsSelf(likes) [for narcissists]
– reflexive, irreflexive, symmetric, and universal properties, e.g.:

ReflexiveObjectProperty(hasRelative);
IrreflexiveObjectProperty(husbandOf)

– disjoint properties, e.g.:
DisjointObjectProperties(childOf spouseOf)

– keys, e.g.:
HasKey(Person () (hasSSN))

OWL 2 DL

• R often used for ALC extended with property chain inclusion axioms
– following the notion introduced in RIQ [Horrocks and Sattler, 2003]

– including transitive property axioms

• Additional letters indicate other extensions, e.g.:
– S for property characteristics (e.g., reflexive and symmetric)

– O for nominals/singleton classes

– I for inverse roles

– Q for qualified number restrictions

• property characteristics (S) + R + nominals (O) + inverse (I) +
qualified number restrictions(Q) = SROIQ

• SROIQ [Horrocks et al., 2006] is the basis for OWL 2 DL

OWL 2 Profiles

• Rationale:
– Tractable, easier to implement and deploy
– Tailored to specific reasoning services

• Popular reasoning services
– TBox reasoning: OWL 2 EL

– ABox reasoning: OWL 2 RL

– Query answering: OWL 2 QL

• Specification: http://www.w3.org/TR/2009/CR-owl2-
profiles-20090611/

OWL 2 Reasoners (partial list)

• OWL 2 DL reasoners
– FaCT++ (Manchester), HermiT (Oxford), Pellet (Clarkparsia)

• OWL 2 EL reasoners
– CEL (Dresden), REL (Aberdeen)

• OWL 2 RL reasoners
– OWLRL (Ivan Herman), Jena (HP Labs Bristol, Aberdeen), Oracle 11g

OWL Reasoner (Oracle)
• OWL 2 QL reasoners

– QuOnto (Rome), Quill (Aberdeen)

• See: http://www.w3.org/2007/OWL/wiki/Test_Suite_Status

Roadmap: OWL 2 Profiles

• Popular reasoning services
– TBox reasoning: OWL 2 EL

• see yesterday’s tutorial “OWL 2: The Coming Version of OWL” at
the Summer School of Logic Foundations of the Semantic Web

– ABox reasoning: OWL 2 RL
• most related to this tutorial

– Query answering: OWL 2 QL
• see the keynote “Scalable Query Answering over Expressive

Ontology Languages” on 31st Aug in the CSWS2009 conference

• Specification: http://www.w3.org/TR/2009/CR-owl2-
profiles-20090611/

OWL 2 and Rules

• Three approaches
– OWL 2 RL: (Explicit) Intersection

of OWL 2 and horn rules

– DL rules [Krötzsch et al. 2008]:
Internalise some horn rules into
OWL 2 axioms

– “SWRL 2”: union of OWL 2 and
rules

OWL 2 RL

• Inspired by Description Logic Programs [Grosof et al.,
2003] and pD* [ter Horst, 2005]
– amenable to implementation using rule-based technologies

• Main idea: avoid the need to infer the existence of
individuals not explicitly present in the ontology
– distinguish subClass expressions from superClass expressions

– E.g., general existential restrictions can not be used as a
superClassExp

OWL 2 RL Axioms

• Redefine all axioms of the structural specification OWL 2 Specification
that refer to class expressions

• Class axioms:
– Class axioms: SubClassOf (subClassExp superClassExp)

• Domains and ranges
– ObjectPropertyDomain (ObjectPropertyExp superClassExp)

– ObjectPropertyRange (ObjectPropertyExp superClassExp)

• Class assertions
– ClassAssertion (superClassExp individual)

• Specification: http://www.w3.org/TR/2009/CR-owl2-profiles-20090611/

Examples: OWL 2 RL

• ⇒ C(a), ⇒ R(a,b)
– C(a), R(a,b)

• C(?x),D(?x) ⇒E(?x)
– C u D v E

• hasParent(?x,?p), hasBrother(?p,?b) ⇒ hasUncle(?x,?b)
– hasParent ◦ hasBrother v hasUncle

• C(?x),R(?x,?y) ⇒D(?x)
– C u R.T v D

• C(?x),R(?x,?y) ⇒D(?y)
– R-.C v D

• C(?x),R1(?x,?y) ⇒ R2(?x,?y)
– ?

Rule Internalisations in OWL 2

• Basic idea: turn classes into properties

• How?
– By using local reflexivity restrictions (R.Self)

– which is beyond OWL 2 RL

• Example
– C(?x),R1(?x,?y) ⇒ R2(?x,?y)

• C  Rc.Self, Rc ◦ R1 v R2

Rule Internalisations in OWL 2
(II)

• How about
– C(?x),D(?y) ⇒ R(?x,?y)

• C  Rc.Self, D  Rd.Self, Rc ◦ Rd v R?

• Incorrect, since ?x and ?y are unconnected

• Solution: universal property (that connects every pair of
individuals)
– C(?x),D(?y) ⇒ R(?x,?y)

• C  Rc.Self, D  Rd.Self, Rc ◦ U ◦ Rd v R

Rule Internalisations in OWL 2
(III)

• To sum up:
– OWL 2 can internalise many rules

– Much more than those supported by OWL 2 RL

• But not all of them
– E.g. those with cycles on the body

– C(?x),R1(?x,?y),R2(?y,?z), R3(?z,?x) ⇒D(?x)

Tutorial Outline

• Motivation

• OWL 2 and Semantic Web rules
– The big picture

• More technical discussions on Semantic Web rules

• Practical: Hands-on Session

Big picture revisit
• Two forms of integrations:

– Homogeneous integration.

This is where rules are considered an integral part of the knowledge
representation formalism used to encode ontologies.

– Heterogeneous integration.

This is where rules are not used to model ontologies, but rather used to
communicate with ontologies in a more loose fashion. This can take the
form of either layering rules on top of ontologies for rule applications, or for
querying ontologies.

Big picture
• Description Logic, Rules,

and First Order Logic

• Semantics

Description Logic Rules

FOL semantics FOL semantics
Completion semantics
well-founded semantics
stable model semantics
answer set semantics

Homogeneous

Heterogeneous

Big picture
• Earlier integrations:

– CARIN [Levy and Rousset, 1998]

– AL-log [Donini et al., 1998]

– Description Logic Programs (DLPs) [Grosof et al., 2003]

– SWRL [Horrocks et al., 2004]

– DL-safe rules [Motik et al., 2005]

– hex-programs [Eiter et al., 2006]

– HD-rules [Drabent and Maluszynski, 2007]

– ELP [Krötzsch et al.,, 2008]

– OWL 2 RL [Patel-Schneider et al., 2008].

Big picture
• Earlier integrations:

– CARIN [Levy and Rousset, 1998]

– AL-log [Donini et al., 1998]

– Description Logic Programs (DLPs) [Grosof et al., 2003]

– SWRL [Horrocks et al., 2004]

– DL-safe rules [Motik et al., 2005]

– hex-programs [Eiter et al., 2006]

– HD-rules [Drabent and Maluszynski, 2007]

– ELP [Krötzsch et al.,, 2008]

– OWL 2 RL [Patel-Schneider et al., 2008].

Homogeneous
Heterogeneous

We investigate:
• Earlier integrations:

– CARIN [Levy and Rousset, 1998]

– AL-log [Donini et al., 1998]

– Description Logic Programs [Grosof et al., 2003]

– SWRL [Horrocks et al., 2004]

– DL-safe rules [Motik et al., 2005]

– hex-programs [Eiter et al., 2006]

– HD-rules [Drabent and Maluszynski, 2007]

– ELP [Krötzsch et al.,, 2008]

– OWL 2 RL [Patel-Schneider et al., 2008].

Description Logic Programs
• Description Logic Programs [Grosof et al., 2003]

– an expressive intersection between rule formalisms and DLs

– Example

C ⊑ ∀R.D to C(x) , R(x, y) ⇒ D(y)

– Almost useless in both DL and LP

DL-safe SWRL
• Idea: KR = OWL DL + Horn rules ?

• Rules:

antecedent ⇒ consequent

“if antecedent holds, then the consequent also holds.”

• Example

parent(?x,?y) , brother(?y,?z) ⇒ uncle(?x,?z)

“the composition of parent and brother properties implies the
uncle property ”

DL-safe SWRL
• KR = OWL DL + Rules is undecidable. Why?

• DL-safe rule:
– “Every variable in the rule must appear in a non-DL atom.”
– It ensures that rule apply only to individuals which are explicitly given

in the knowledge base.
– Herbrand-style way of interpreting them

• Example:
O(?x), O(?y), O(?z), parent(?x,?y), brother(?y,?z)) ⇒ uncle(?x,?z)

DL atoms

DL-safe SWRL
• KR = OWL DL + DL-safe Rules is decidable

• Complexity:
– exponential time for query answering in

KB = SHIQ + DL-safe Rules

• Systems:
– KAON2

– Pellet

Hex program
• Hex program:

– A set of rules with negation as failure

– Load ontology with external atoms

– Answer set semantics

– Heterogeneous integration

– Using external computational source

Hex program
• Hex program

• External atom

&g[Y1, …, Yn](X1,..,Xm)
&g: external predicate name

Y: input list

X: output list

ontology

Answer set programming
External atoms

Hex program
• Example:

reached(x) :- &reach[graph1; a](x)

It computes the predicate reached taking values from the
predicate &reach, which computes via &reach[edge; a] all
the reachable nodes in the graph graph1 from node a.

Tutorial Outline

• Motivation

• OWL 2 and Semantic Web rules
– The big picture

• More technical discussions on Semantic Web rules

• Practical: Hands-on Session

Practical Preparation
• Java SDK version 1.6

– http://java.sun.com

• Protégé
– http://protege.stanford.edu

• Files in the following USB folders
– SWR-practical

Part 1: OWL 2 RL
• Check the ontology syntax against the OWL 2 RL

Profile using the syntax checker
– Ontology URL: http://owl.man.ac.uk/2005/07/sssw/people.owl

– Syntax Checker: http://dipper.csd.abdn.ac.uk:8080/OWL2ProfileChecker/

• There are several axioms which are not valid OWL 2 RL. However,
an RL reasoner can perform incomplete reasoning over this
ontologies.

Completeness
• This section will give some examples of the sort of

entailments can be made by OWL 2 RL reasoners.
– Open the people.owl ontology in Protégé

– Open a command prompt or terminal window.
– Change to the PracticalOWLandSWRL directory.

Completeness (2)
• Open the file query_animal-lovers.txt in a text editor. This query should

retrieve all instances of the class animal_lover.

• To run this query with Pellet type:
– java -jar PelletSWRL.jar people.owl < query_animal-lovers.txt

• To run this query with Jena type:
– java -jar JenaOWL2RL.jar people.owl < query_animal-lovers.txt

• In this case Jena gives incomplete results because of the lack of support for
number restrictions in OWL 2 RL.

• Using Protégé, check the Class Description for the concept animal_lover.

Completeness (3)
• Open the file query_tabloid-newspapers.txt in a text editor. This query should

retrieve all instances of the class tabloid.
• To run this query with Pellet type:

– java -jar PelletSWRL.jar people.owl < query_tabloid-newspapers.txt

• To run this query with Jena type:
– java -jar JenaOWL2RL.jar people.owl < query_tabloid-newspapers.txt

• In this case Jena and Pellet give the same results.

• Using Protégé, check which instances are listed for tabloid.

• The_Sun is asserted to be an instance of tabloid. The Daily_Mirror is inferred to be a
tabloid, since it is read by Mick, who is a white_van_man. The class description for
white_van_man shows that they only read tabloid newspapers.

• Universal restrictions are supported by OWL 2 RL when used in this way.

Exercise 1
• Now try query_things-that-eat-bones.txt with both reasoners.

• Pellet and Jena’s results differ. Can you explain why an OWL 2 RL
reasoner could not find all answers to this query?

Exercise 2
• Now try query_white-van-man.txt with both reasoners.

• Jena returns the correct answers for this query. Which OWL 2 RL
axioms could have resulted in the entailment that Mick is a
white_van_man ?

Part 2: SWRL
• Open the dl-safe.owl ontology with Protégé.

• This ontology contains OWL classes, properties, individuals and
SWRL rules.

• If the rules view is not displayed under any of the main tabs:
– Select: View > Ontology Views > Rules

– Click on one of the existing panes to display the Rules view.

SWRL Example
• This rule asserts that a grand child is bad, if it hates another individual:

– Grandchild(?x) , hates(?x, ?y) -> BadChild(?x)

• Open the file query_bad-child.txt in a text editor. This query will retrieve
all BadChild individuals entailed by the ontology + rules.

• To run this query with Pellet type:
– java -jar PelletSWRL.jar dl-safe.owl < query_bad-child.txt

• Note that OWL 2 RL reasoners do not directly support SWRL rules so we will not
use Jena in this section.

SWRL Example cont.
• The ontology contains an axiom which entails all People are of the class

Grandchild, based on the restriction that all Person individuals have a father.

• The axiom responsible is not supported by the Protégé editor:

– SubClassOf(ObjectSomeValuesFrom(father ObjectSomeValuesFrom(father Person))
Grandchild)

• Finally, for a person to be a BadChild then they must hate another individual. The
individual view shows that both Romulus and Cain have a person who they hate,
so are therefore instances of BadChild.

Exercise 3
• Modify the ontology to include a rule that asserts instances

of HappyChild.
– You can add another property to the ontology such as likes and

assert some of the Person instances to like another individual.

• You can check the entailed instances of HappyChild with
Pellet:

– java -jar PelletSWRL.jar dl-safe.owl < query_happy-child.txt

Conclusion
• OWL 2 provide a family of languages with different levels

of expressive power and complexity
– Decidability

– Tractability

• OWL 2 RL is not the intersection between OWL 2 DL and
Horn rules

• Using internalisation, OWL 2 can represent many more
rules

• Scalable reasoning services are needed for decidable rule
extended ontology languages

Resources
• W3C OWL WG homepage:

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

• OWL 2 Profile specification: http://www.w3.org/TR/owl2-profiles/

• W3C RIF WG homepage:
http://www.w3.org/2007/OWL/wiki/Test_Suite_Status#OWL_2_RL_Test_Cases

Some selected articles:

• M. Krötzsch, S. Rudolph, P. Hitzler. Description Logic
Rules. In Proc. 18th European Conf. on Artificial
Intelligence (ECAI 2008), IOS Press, 2008.

