PROLOG.
Lists in PROLOG. Operations and Predicates.

Lists as Sequences, Sets, Bags. Meta Predicates.

Antoni Ligeza
Katedra Automatyki, AGH w Krakowie

2011

Antoni Ligeza Prolog 117

References

(1

2

3

[4
[5
[6
[7

[8

]

]

]

]

—

]

[|

Ulf Nilsson, Jan Maluszynski: Logic, Programming and Prolog, John Wiley &
Sons Ltd., pdf, http://www.ida.liu.se/ ulfni/lpp

Dennis Merritt: Adventure in Prolog, Amzi, 2004
http://www.amzi.com/AdventurelnProlog

Quick Prolog:
http://www.dai.ed.ac.uk/groups/ssp/bookpages/quickprolog/quickprolog.html

W. F. Clocksin, C. S. Mellish: Prolog. Programowanie. Helion, 2003
SWI-Prolog’s home: http://www.swi-prolog.org

Learn Prolog Now!: http://www.learnprolognow.org
http://home.agh.edu.pl/ ligeza/wiki/prolog

http://www.im.pwr.wroc.pl/ przemko/prolog

Antoni Ligeza Prolog 217

Introduction to Lists in Prolog

Lists - basic concepts

"I Lists are one of the most important structures in symbolic languages.

I In most of the implementations of PROLOG lists are standard, build-in structures
and there are numerous operations on them provided as routine predicates.
I« Lists can be used to represent

Q sets,

@ sequences,

@ multi-sets (bags), and

© more complex structures, such as trees, records, nested lists, etc.

Lists - basic notation

A list in PROLOG is a structure of the form
[t1, 02, .oy]

The order of elements of a list is important; the direct access is only to the first
element called the Head, while the rest forms the list called the Tail.

[Head|Tail]

where Head is a single element, while Tail is a list.

Antoni Ligeza Prolog 317

Definition of Lists. Lists as Terms

Lists as Terms

Lists in fact are also terms. A list:

(11,02, .-y]

is equivalent to a term defined as follows:

l(tl, (t2$ l(tn’nll)))

1/2 is the list constructor symbol and nil is symbolic denotation of empty list.

Lists: Head and Tail

In practical programming it is convenient to use the bracket notation. In order to
distinguish the head and the tail of a list the following notation is used

[H|T].

An example of list matching

p)
(1]
N,

1 [HIT] = [a,b,c,d,e]
2 H=a, T = [b,c,d,el

Antoni Ligeza Prolog 417

Some Notes on lists. Unification Variants

I A list can have as many elements as necessary.

I A list can be empty; an empty list is denoted as [].
I A list can have arguments being of:
@ mixed types,

© complex structures, i.e. terms, lists, etc., and as a consequence
@ alist can have nested lists (to an arbitrary depth)

I alist of k elements can be matched directly against these elements, i.e.
(x,v,2,0,v] = [a,b,c,d,e]

2 X=a, Y=b, Z=c, U=d, V=e

I first k elements of any list can be matched directly

1 [XY,2|T] = [a,b,c,d,e]
2 X=a, Y=b, Z=c, T=[d,e]

4

Single-element list

A single-element list is different from its content-element!

foo # [foo]

Antoni Ligeza Prolog 517

First k elements. The n-th element. Propagation of Substitutions

First k-elements: k = 1,2, 3

© 9 o G W N e

1 take(l,[H|_]1,H):— !.
2 take(N,[_|T],X):- N1 is N-1, take(N1l,T,X).

Propagation of substitutions

Antoni Ligeza Prolog 6/17

Applications of Lists: Examples

List understanding: three basic possibilities

I as sequences,
Y4 as sets,

I as sets with repeated elements,

When thinking of lists as sets, the order of elements is (read: must be made)
unimportant.

Lists as sets

[a,ls,e,el,e
2 [1,1,2,3,4
[1,a,2,b, f

Repeated elements can occur.

Antoni Ligeza Prolog N7

Member/2 and Select/3 Predicates

Checking if an item occurs within a list; deterministic version.

1 member (Element, [Element|_):— !.
2 member (Element, [_|Tail]) :—
3 member (Element, Tail) .

Checking if an item occurs within a list; indeterministic version.

1 member (Element, [Element|_) .
2 member (Element, [_|Tail]) :—
3 member (Element, Tail) .

Selecting and item from a list — indeterministic.

1 select (Element, [Element |Tail], Tail) .
2 select (Element, [Head|Tail], [Head|TaiE]) :—
3 select (Element, Tail, TaiE) .

Antoni Ligeza Prolog 8/17

Lists as Sequences: the Beauty of the Append/3 Predicate

The basic use of the append/3 predicate is to concatenate two lists.

1 append([],L,L).
2 append([H|T],L, [HITL]) :- append(T,L,TL).

v

Concatenation Test

1 append([a,bl, [c,d,e], [a,b,c,d,e]).

<

Finding Front List

1 append (FL, [c,d,e], [a,b,c,d,e]).
2 FL = [a,Db]

Finding Back List

1 append([a,bl,BL, [a,b,c,d,e]l).
2 BL = [c,d,el]

Antoni Ligeza Prolog 917

Append/3 — List Decomposition

List Decomposition

append (FL,BL, [a,b,c,d,e])

FL = [],
BL = [a,b,c,d,el;

FL = [a],
BL = [b,c,d,el;

9 FL = [a,b],
10 BL = [c,d,e];

12 FL = [a,b,c],
13 BL = [d,e];

15 FL = [a,b,c,d],
16 BL = [e];

18 FL = [a,b,c,d,e],
19 BL = [];
20 false.

Antoni Ligeza Prolog 10/17

Basic Recurrent Operations: length, sum, writing a list

len([],0).

len([_IT],L):-
len(T,LT),
L is LT+1.

S

Sum of a list

sum([],0).

sum([H|T],S) :—
sum (T, ST),
S is ST+H.

T

.

Write a list

writelist ([]):— nl.

writelist ([H|T]) :—
write (H),nl,
writelist (T) .

T

Antoni Ligeza Prolog 117

Putting and Deleting Elements to/form a List

Put X as the first element to L

1 XL = [X]|L].

<

Put X as the k-th element to L

1 putk(X,1,L, [X|L]):— !.
2 putk(X,K, [F|IL], [FILX]):— K1 is K-1, putk(X,K1,L,LX).

Delete one X from L (indeterministic!)

1 del(X, [X|L],L).
2 del(X,[Y|L], [Y|L1]):-
3 del(X,L,L1).

Delete all X from L

1 delall(_,[],[]1):= !.
2 delall(X,[H|L],[H|LL]):- X \= H,!, delall(X,L,LL).
3 delall(X, [X|L],LL):- delall(X,L,LL).

Antoni Ligeza Prolog 1217

Lists and sublists. Nested Lists. Flatten List

[1,2,3,4,5,6,7,8,9]
[3.4,5,6]

Checking for a sublist

1 sublist(S,FSL,F,L):- append(F,SL,FSL),append(S,L,SL) .

W
A list and a subsequence

[1,2,3,4,5,6,7,8,9]
[3,5.8]

Checking for subsequence

1 subseqg([],_):— !.
2 subseq([H|S],L):- append(_, [H|SL],L),!, subseq(S,SL).

Nested lists. Flatten a list

[1,[2,3].4,[5,[6,71,8].9] — [1,2,3,4,5,6,7,8,9]

Antoni Ligeza Prolog 13/17

Lists: some small challenges

ON — [1,23,..N-1,N],

Q List: [1,2,3,4,5,6,7] —— all permutations,

Q K, [1,2,3,45,6,7] — K-element comobinations,
@ Set: [1,2,3,4,5,6,7] —— all subsets,

@ ExchangeFL: [1,2,3,4,5,6,7] — [7,2,3,4,5,6,1],
@ ShiftLCircular: [1,2,3,4,5,6,7] — [2,3,4,5,6,7,1],
@ ShiftRCircular: [1,2,3,4,5,6,7 — [7,1,2,3,4,5,6,7],
Q Split: [1,2,3,4,5,6,7] — [1,3,5,7], [2,4,6],

@ Merge: [1,3,5,7], [2,4,6] — [1,2,3,4,5,6,7],

@ Split C=4: [1,2,3,4,5,6,71 — [1,2,3],[4],[5.6,7],
@ pl.p2. ...pK. — [pl,p2....pK].

W

"4 Recursion —— Iterations,

"M Recursion —— repeat-fail.

Antoni Ligeza Prolog 14/17

Inserting List Element. Permutations.

Insert (indeterministic!). Permutations: insert

insert (X,L,LX):— del(X,LX,L).

perm([], [1).

perm([H|T],P) :-
perm(T, T1),
insert (H,T1,P) .

o s W N e

V.

Sorted List Definition

1 sorted([]):- !. sorted([_]):- !.
2 sorted([X,Y|T]) :— X =< Y, sorted([Y|T]).

V.

1 slowsort (L,S) :—
2 perm(L,S),
3 sorted(S) .

Antoni Ligeza Prolog 15/17

Reverse List. Inverse List

Naive List Reverse

reverse ([],[]) .

reverse ([X|L],R) :—
reverse (L,RL),
append (RL, [X],R) .

T

Iterative List Inverting: Accumulator

inverse (L,R) : —
do([]1,L,R) .

do (L, [1,L):=!.

do (L, [X|T],S) :—
do ([X|L],T,S) .

Qs W N e

[abc], [defg] — [dc,bal, [ef.g]

Antoni Ligeza Prolog 16/17

Lists as Sets: Basic Operations

Set Algebra Operations

subset ([],_) .

subset ([X|L],Set) :—
member (X, Set) ,
subset (L, Set) .

intersect ([]1,_,[]) .

intersect ([X|L], Set, [X|Z]) :—
member (X, Set), !,
intersect (L, Set, Z) .

intersect ([X|L], Set, Z) :—

10 not (member (X, Set)),

11 intersect (L, Set, Z) .

12 union([],Set, Set).

13 union([X|L],Set,Z) :—

W UG W N

14 member (X, Set), !,

15 union (L, Set, Z) .

16 union([X|L],Set, [X|Z]) :—

17 not (member (X, Set)), !,
18 union (L, Set, Z) .

19 difference([],_,[]).

20 difference([X|L],Set, [X]Z]) :—

21 not (member (X, Set)), !,

22 difference (L, Set,Z) .

23 difference([_|L],Set,Z):- difference(L,Set,?Z).

Antoni Ligeza Prolog 17117

