
PROLOG.
Substitutions and Unification

Antoni Ligęza

Department of Applied Computer Science
AGH University of Science and Technology at Kraków

2021

Antoni Ligęza Prolog 1/19

References

[1] Ulf Nilsson, Jan Małuszyński: Logic, Programming and Prolog, John Wiley &
Sons Ltd., pdf, http://www.ida.liu.se/ ulfni/lpp

[2] Dennis Merritt: Adventure in Prolog, Amzi, 2004
http://www.amzi.com/AdventureInProlog

[3] Quick Prolog:
http://www.dai.ed.ac.uk/groups/ssp/bookpages/quickprolog/quickprolog.html

[4] W. F. Clocksin, C. S. Mellish: Prolog. Programowanie. Helion, 2003

[5] SWI-Prolog’s home: http://www.swi-prolog.org

[6] Learn Prolog Now!: http://www.learnprolognow.org

[7] http://home.agh.edu.pl/ ligeza/wiki/prolog

[8] http://www.im.pwr.wroc.pl/ przemko/prolog

Antoni Ligęza Prolog 2/19

Substitutions

The role of substitutions

z Substitution is an operation allowing to replace some variables occurring in
a formula with terms.

z The goal of applying a substitution is to make a certain formula more specific so
that it matches another formula. Substitutions allow for unification of formulae
(or terms).

Definition

A substitution σ is any finite mapping of variables into terms of the form

σ : V → TER.

Notation of substitutions

z Any (finite) substitution σ can be presented as

σ = {X1/t1,X2/t2, . . . ,Xn/tn},

where ti is a term to be substituted for variable Xi , i = 1, 2, . . . , n.

z Φσ is the formula (or term) resulting from simultaneous replacement of the
variables of Φ with the appropriate terms of σ.

Antoni Ligęza Prolog 3/19

Extending substitutions over Terms and Formulae

Any substitution σ (σ : V → TER) is extended to operate on terms and formulae so
that a finite mapping of the form

σ : TER ∪ FOR→ TER ∪ FOR

satisfying the following conditions is induced:

z σ(c) = c for any c ∈ C;

z σ(X) ∈ TER, and σ(X) 6= X for a certain finite number of variables only;

z if f (t1, t2, . . . , tn) ∈ TER, then

σ(f (t1, t2, . . . , tn)) = f (σ(t1), σ(t2), . . . , σ(tn));

z if p(t1, t2, . . . , tn) ∈ ATOM, then

σ(p(t1, t2, . . . , tn)) = p(σ(t1), σ(t2), . . . , σ(tn));

z σ(Φ �Ψ) = σ(Φ) � σ(Ψ) for any two formulae Φ,Ψ ∈ FOR and for
� ∈ {∧,∨,⇒,⇔};

Antoni Ligęza Prolog 4/19

Instances, Ground Terms, Ground Formulae

An Instance

Any formula σ(Φ) resulting from application of substitution σ to the variables of Φ
will be denoted as

Φσ

and it will be called a substitution instance or simply an instance of Φ.

A Ground Instance, Term Formula

If no variables occur in Φσ, it will be called a ground instance (a ground formula or a
ground term, respectively).

Example

Let σ = {X/a, Y/f (b)}, and let Φ = p(X, Y, g(X)). Then

Φσ = p(a, f (b), g(a))

and it is a ground formula.

Antoni Ligęza Prolog 5/19

Composition of Substitutions

Since substitutions are mappings, a composition of substitutions is well defined.
Having two substitutions, say σ and θ, the composed substitution σθ can be obtained
from σ by:

z simultaneous application of θ to all the terms of σ,

z deletion of any pairs of the form X/t where t = X (identity substitutions), and

z enclosing all the pairs X/t of θ, such that σ does not substitute for (operate on)
X.

More formally:

Let σ = {X1/t1,X2/t2, . . . ,Xn/tn} and let θ = {Y1/s1, Y2/s2, . . . , Ym/sm}. The
composition of the above substitutions is obtained from the set

{X1/t1θ,X2/t2θ, . . . ,Xn/tnθ, Y1/s1, Y2/s2, . . . , Ym/sm}

by:

z removing all the pairs Xi/tiθ where Xi = tiθ, and

z removing all the pairs Yj/sj where Yj ∈ {X1,X2, . . . ,Xn}.

Antoni Ligęza Prolog 6/19

An Example

Example

Consider the following substitutions:

σ = {X/g(U), Y/f (Z),V/W, Z/c}

and
θ = {Z/f (U),W/V,U/b}.

The composition of them is defined as: ???

Antoni Ligęza Prolog 7/19

An Example

Example

Consider the following substitutions:

σ = {X/g(U), Y/f (Z),V/W, Z/c}

and
θ = {Z/f (U),W/V,U/b}.

The composition of them is defined as:

σθ = {X/g(b), Y/f (f (U)), Z/c,W/V,U/b}.

Antoni Ligęza Prolog 8/19

Renaming and Inverse Substitutions

A Renaming Substitution

Substitution λ is a renaming substitution iff it is off the form

θ = {X1/Y1,X2/Y2, . . . ,Xn/Yn} (1)

Moreover, it is a one-to-one mapping if Yi 6= Yj for i 6= j, i, j ∈ {1, 2, . . . , n}.

An Inverse Substitution

Assume λ is a renaming, one-to-one substitution . The inverse substitution for it is
given by

λ−1 = {Y1/X1, Y2/X2, . . . , Yn/Xn, }.

Composition of inverse substitutions

The composition of a renaming substitution and the inverse one leads to an empty
substitution, traditionally denoted with ε; we have

λλ−1 = ε.

Antoni Ligęza Prolog 9/19

Some properties

An Instance

Let E denote an expression (formula or term), ε denote an empty substitution, and let
λ be a one-to-one renaming substitution; σ and θ denote any substitutions.
The following properties are satisfied for any substitutions:

z E(σθ) = (Eσ)θ,

z σ(θγ) = (σθ)γ (associativity),

z Eε = E,

z εσ = σε = σ.

Note that, in general, the composition of substitutions is not commutative.

Antoni Ligęza Prolog 10/19

Unification

Substitutions are applied to unify terms and formulae. Unification is a process of
determining and applying a certain substitution to a set of expressions (terms or
formulae) in order to make them identical. We have the following definition of
unification.

Definition

Let E1,E2, . . . ,En ∈ TER ∪ FOR are certain expressions. We shall say that
expressions E1,E2, . . . ,En are unifiable if and only if there exists a substitution σ,
such that

{E1,E2, . . . ,En}σ = {E1σ,E2σ, . . . ,Enσ}

is a single-element set.
Substitution σ satisfying the above condition is called a unifier (or a unifying
substitution) for expressions E1,E2, . . . ,En.

Note that if there exists a unifying substitution for some two or more expressions
(terms or formulae), then there usually exists more than one such substitution (or
even infinitely many unifiers).

Antoni Ligęza Prolog 11/19

The Most General Unifier (mgu)

It is useful to define the so-called most general unifier (mgu, for short), which,
roughly speaking, substitutes terms for variables only if it is necessary, leaving as
much place for possible further substitutions, as possible.

Definition

A substitution σ is a most general unifier for a certain set of expressions if and only
if, for any other unifier θ of this set of expressions, there exists a substitution λ, such
that θ = σλ.

The meaning of the above definition is obvious. Substitution θ is not a most general
unifier, since it is a composition of some simpler substitution σ with an auxiliary
substitution λ.
In general, for arbitrary expressions there may exist an infinite number of unifying
substitutions. However, it can be proved that any two most general unifiers can differ
only with respect to variable names. This is stated with the following theorem.

A Theorem

Let θ1 and θ2 be two most general unifiers for a certain set of expressions. Then, there
exists a one-to-one renaming substitution λ such that θ1 = θ2λ and θ2 = θ1λ

−1.

Antoni Ligęza Prolog 12/19

An example

Example

As an example consider atomic formulae p(X, f (Y)) and p(Z, f (Z)). The following
substitutions are all most general unifiers:

z θ = {X/U, Y/U, Z/U},
z θ1 = {Z/X, Y/X},
z θ2 = {X/Y, Z/Y},
z θ3 = {X/Z, Y/Z}.

All of the above unifiers are equivalent — each of them can be obtained from another
one by applying a renaming substitution. For example, θ = θ1λ for λ = {X/U}; on
the other hand obviously θ1 = θλ−1.

Antoni Ligęza Prolog 13/19

Unification Algorithm — An Idea

z It can be proved that if the analyzed expressions are terms or formulae, then
there exists an algorithm for efficient generating the most general unifier,
provided that there exists one; in the other case the algorithm terminates after
finite number of steps . Hence, the unification problem is decidable.

z The basic idea of the unification algorithm can be explained as a subsequent
search through the structure of the expressions to be unified for inconsistent
relative components and replacing one of them, hopefully being a variable, with
the other.

z In order to find inconsistent components it is useful to define the so-called
disagreement set.

z Let W ⊆ TER ∪ FOR be a set of expressions to be unified. A disagreement set
D(W) for a nonempty set W is the set of terms obtained through parallel search
of all the expressions of W (from left to right), which are different with respect
to the first symbol. Hence, the set D(W) specifies all the inconsistent relative
elements met first during the search.

Antoni Ligęza Prolog 14/19

Unification Algorithm

Algorithm for Unification

1 Set i = 0, Wi = W, θi = ε.
2 If Wi is a singleton, then stop; θi is the most general unifier for W.
3 Find D(Wi).
4 If there are a variable X ∈ D(Wi) and a term t ∈ D(Wi), such that X does not

occur in t, then proceed; otherwise stop — W is not unifiable.
5 Set θi+1 = θ{X/t}, Wi+1 = Wi{X/t}.
6 Set i = i + 1 and go to 2.

Antoni Ligęza Prolog 15/19

Application Example

Consider two atomic formulae p(X, f (X, Y), g(f (Y,X))) and p(c, Z, g(Z)). The
following steps illustrate the application of the unification algorithm to these atomic
formulae.

1 i = 0, W0 = {p(X, f (X, Y), g(f (Y,X))), p(c, Z, g(Z))}, θ0 = {}.
2 D(W0) = {X, c}.
3 θ1 = {X/c}, W1 = {p(c, f (c, Y), g(f (Y, c))), p(c, Z, g(Z))}.
4 D(W1) = {f (c, Y), Z}.
5 θ2 = {X/c}{Z/f (c, Y)} = {X/c, Z/f (c, Y)},

W2 = {p(c, f (c, Y), g(f (Y, c))), p(c, f (c, Y), g(f (c, Y)))}.
6 D(W2) = {Y, c}.
7 θ3 = {X/c, Z/f (c, Y)}{Y/c} = {X/c, Z/f (c, c), Y/c},

W3 = {p(c, f (c, c), g(f (c, c))), p(c, f (c, c), g(f (c, c)))}.
8 Stop; the most general unifier is θ3 = {X/c, Z/f (c, c), Y/c}.

Antoni Ligęza Prolog 16/19

Properties of the Unification Algorithm

Theorem
1 If W is a finite set of unifiable expressions, then

1 the Unification Algorithm always terminates at step 2 and
2 it produces the most general unifier for W.

2 Moreover, if the expressions of W are not unifiable, then the algorithm
terminates at step 4.

Antoni Ligęza Prolog 17/19

Unification in Prolog

From: R. Bartak:
http://kti.mff.cuni.cz/~bartak/prolog/data_struct.html

Unification Algorithm defined in Prolog

1 unify(A,B):-
2 atomic(A),atomic(B),A=B.
3 unify(A,B):-
4 var(A),A=B. % without occurs check
5 unify(A,B):-
6 nonvar(A),var(B),A=B. % without occurs check
7 unify(A,B):-
8 compound(A),compound(B),
9 A=..[F|ArgsA],B=..[F|ArgsB],
10 unify_args(ArgsA,ArgsB).
11

12 unify_args([A|TA],[B|TB]):-
13 unify(A,B),
14 unify_args(TA,TB).
15 unify_args([],[]).

Antoni Ligęza Prolog 18/19

http://kti.mff.cuni.cz/~bartak/prolog/data_struct.html

A final problem

Question

Are X and f (X) unifiable?

Example

What is/should be the result of:
?- X=f(X).
?- X=a, X=f(X).
?- X=f(X), write(X).

Antoni Ligęza Prolog 19/19

