PROLOG.
Lists in PROLOG. Operations and Predicates.

Lists as Sequences, Sets, Bags. Meta Predicates.

Antoni Ligeza

Department of Applied Computer Science
AGH University of Science and Technology at Krakéw

2021

Antoni Ligeza Prolog 117

References

e

e € e e e

Ulf Nilsson, Jan Maluszyniski: Logic, Programming and Prolog, John Wiley &
Sons Ltd., pdf, http://www.ida.liu.se/ ultni/lpp

Dennis Merritt: Adventure in Prolog, Amzi, 2004
http://www.amzi.com/AdventureInProlog

Quick Prolog:
http://www.dai.ed.ac.uk/groups/ssp/bookpages/quickprolog/quickprolog.html

W. F. Clocksin, C. S. Mellish: Prolog. Programowanie. Helion, 2003
SWI-Prolog’s home: http://www.swi-prolog.org

Learn Prolog Now!: http://www.learnprolognow.org
http://home.agh.edu.pl/ ligeza/wiki/prolog

http://www.im.pwr.wroc.pl/ przemko/prolog

Antoni Ligeza Prolog 217

Introduction to Lists in Prolog

Lists - basic concepts

I Lists are one of the most important structures in symbolic languages.

I In most of the implementations of PROLOG lists are standard, build-in structures
and there are numerous operations on them provided as routine predicates.
I Lists can be used to represent

Q sets,

@ sequences,

@ multi-sets (bags), and

@ more complex structures, such as trees, records, nested lists, etc.

Lists - basic notation

A list in PROLOG is a structure of the form
[t1,02, - .oy]

The order of elements of a list is important; the direct access is only to the first
element called the Head, while the rest forms the list called the Tail.

[Head|Tail

where Head is a single element, while Tail is a list.

Antoni Ligeza Prolog 317

Definition of Lists. Lists as Terms

Lists as Terms

Lists in fact are also terms. A list:

(11,02, .-y]

is equivalent to a term defined as follows:

l(tl, (t2$ l(tn’nll)))

1/2 is the list constructor symbol and nil is symbolic denotation of empty list.

Lists: Head and Tail

In practical programming it is convenient to use the bracket notation. In order to
distinguish the head and the tail of a list the following notation is used

[H|T].

An example of list matching

p)
(1]
N,

1 [HIT] = [a,b,c,d,e]
2 H=a, T = [b,c,d,el

Antoni Ligeza Prolog 417

Some Notes on lists. Unification Variants

I A list can have as many elements as necessary.

K A list can be empty; an empty list is denoted as [].
I A list can have arguments being of:
@ mixed types,

© complex structures, i.e. terms, lists, etc., and as a consequence
@ alist can have nested lists (to an arbitrary depth)

Y

a list of k elements can be matched directly against these elements, i.e.
(x,v,2,0,v] = [a,b,c,d,e]

2 X=a, Y=b, Z=c, U=d, V=e

I first k elements of any list can be matched directly

1 [XY,2|T] = [a,b,c,d,e]
2 X=a, Y=b, Z=c, T=[d, el

4

Single-element list

A single-element list is different from its content-element!

foo # [foo]

Antoni Ligeza Prolog 517

First k elements. The n-th element. Propagation of Substitutions

First k-elements: k = 1,2, 3

© 9 o G W N e

1 take(l,[H|_]1,H):— !.
2 take(N,[_|T],X):- N1 is N-1, take(N1l,T,X).

Propagation of substitutions

Antoni Ligeza Prolog 6/17

Applications of Lists: Examples

List understanding: three basic possibilities

as sequences,

as sets,

O K

as sets with repeated elements,

When thinking of lists as sets, the order of elements is (read: must be made)
unimportant.

Lists as sets

a,b,c,d,e
1,2,3,4,5,6,7,8,9]
1,a,2,b,f(a),g(b,c)]

Repeated elements can occur.

Antoni Ligeza Prolog 717

Member/2 and Select/3 Predicates

Checking if an item occurs within a list; deterministic version.

1 member (Element, [Element|_):— !.
2 member (Element, [_|Tail]) :—
3 member (Element, Tail) .

Checking if an item occurs within a list; indeterministic version.

1 member (Element, [Element|_) .
2 member (Element, [_|Tail]) :—
3 member (Element, Tail) .

Selecting and item from a list — indeterministic.

1 select (Element, [Element |Tail], Tail) .
2 select (Element, [Head|Tail], [Head|TaiE]) :—
3 select (Element, Tail, TaiE) .

Antoni Ligeza Prolog 8/17

Lists as Sequences: the Beauty of the Append/3 Predicate

The basic use of the append/3 predicate is to concatenate two lists.

1 append([],L,L).
2 append([H|T],L, [HITL]) :- append(T,L,TL).

v

Concatenation Test

1 append([a,bl, [c,d,e], [a,b,c,d,e]).

<

Finding Front List

1 append (FL, [c,d,e], [a,b,c,d,e]).
2 FL = [a,Db]

Finding Back List

1 append([a,bl,BL, [a,b,c,d,e]l).
2 BL = [c,d,el]

Antoni Ligeza Prolog 917

Append/3 — List Decomposition

List Decomposition

append (FL,BL, [a,b,c,d,e])

FL = [],
BL = [a,b,c,d,el;

FL = [a],
BL = [b,c,d,el;

9 FL = [a,b],
10 BL = [c,d,e];

12 FL = [a,b,c],
13 BL = [d,e];

15 FL = [a,b,c,d],
16 BL = [e];

18 FL = [a,b,c,d,e],
19 BL = [];
20 false.

Antoni Ligeza Prolog 10/17

Basic Recurrent Operations: length, sum, writing a list

len([],0).

len([_IT],L):-
len(T,LT),
L is LT+1.

S

Sum of a list

sum([],0).

sum([H|T],S) :—
sum (T, ST),
S is ST+H.

T

.

Write a list

writelist ([]):— nl.

writelist ([H|T]) :—
write (H),nl,
writelist (T) .

T

Antoni Ligeza Prolog 117

Putting and Deleting Elements to/form a List

Put X as the first element to L

1 XL = [X]|L].

<

Put X as the k-th element to L

1 putk(X,1,L, [X|L]):— !.
2 putk(X,K, [F|IL], [FILX]):— K1 is K-1, putk(X,K1,L,LX).

Delete one X from L (indeterministic!)

1 del(X, [X|L],L).
2 del(X,[Y|L], [Y|L1]):-
3 del(X,L,L1).

Delete all X from L

1 delall(_,[],[]1):= !.
2 delall(X,[H|L],[H|LL]):- X \= H,!, delall(X,L,LL).
3 delall(X, [X|L],LL):- delall(X,L,LL).

Antoni Ligeza Prolog 1217

Lists and sublists. Nested Lists. Flatten List

[1,2,3,4,5,6,7,8,9]
[3.4,5,6]

Checking for a sublist

1 sublist(S,FSL,F,L):- append(F,SL,FSL),append(S,L,SL) .

W
A list and a subsequence

[1,2,3,4,5,6,7,8,9]
[3,5.8]

Checking for subsequence

1 subseqg([],_):— !.
2 subseq([H|S],L):- append(_, [H|SL],L),!, subseq(S,SL).

Nested lists. Flatten a list

[1,[2,3].4,[5.[6,71,8].9] — [1,2,3,4,5,6,7,8,9]

Antoni Ligeza Prolog 13/17

Lists: some small challenges

ON — [1,23,..N-1,N],

Q List: [1,2,3,4,5,6,7] —— all permutations,

Q K, [1,2,3,45,6,7] — K-element comobinations,
@ Set: [1,2,3,4,5,6,7] —— all subsets,

@ ExchangeFL: [1,2,3,4,5,6,7] — [7,2,3,4,5,6,1],
@ ShiftL.Circular: [1,2,3,4,5,6,7] — [2,3,4,5,6,7,1],
@ ShiftRCircular: [1,2,3,4,5,6,7 — [7,1,2,3,4,5,6,7],
Q Split: [1,2,3,4,5,6,7] — [1,3,5,7], [2,4,6],

@ Merge: [1,3,5,7], [2,4,6] — [1,2,3,4,5,6,7],

@ Split C=4: [1,2,3,4,5,6,7] — [1,2,3],[41,[5,6,7],
@ pl.p2. ...pK. — [pl,p2....pK].

v

"I Recursion — Iterations,

I Recursion — repeat-fail.

Antoni Ligeza Prolog 14/17

Inserting List Element. Permutations.

Insert (indeterministic!). Permutations: insert

insert (X,L,LX):— del(X,LX,L).

perm([], [1).

perm([H|T],P) :-
perm(T, T1),
insert (H,T1,P) .

o s W N e

V.

Sorted List Definition

1 sorted([]):- !. sorted([_]):- !.
2 sorted([X,Y|T]) :— X =< Y, sorted([Y|T]).

V.

1 slowsort (L,S) :—
2 perm(L,S),
3 sorted(S) .

Antoni Ligeza Prolog 15/17

Reverse List. Inverse List

Naive List Reverse

reverse ([],[]) .

reverse ([X|L],R) :—
reverse (L,RL),
append (RL, [X],R) .

T

Iterative List Inverting: Accumulator

inverse (L,R) : —
do([]1,L,R) .

do (L, [1,L):=!.

do (L, [X|T],S) :—
do ([X|L],T,S) .

Qs W N e

[a)b.c], [defg]l — [dc,bal, [ef.g]

Antoni Ligeza Prolog 16/17

Lists as Sets: Basic Operations

Set Algebra Operations

subset ([],_) .

subset ([X|L],Set) :—
member (X, Set) ,
subset (L, Set) .

intersect ([]1,_,[]) .

intersect ([X|L], Set, [X|Z]) :—
member (X, Set), !,
intersect (L, Set, Z) .

intersect ([X|L], Set, Z) :—

10 not (member (X, Set)),

11 intersect (L, Set, Z) .

12 union([],Set, Set).

13 union([X|L],Set,Z) :—

W UG W N

14 member (X, Set), !,

15 union (L, Set, Z) .

16 union([X|L],Set, [X|Z]) :—

17 not (member (X, Set)), !,
18 union (L, Set, Z) .

19 difference([],_,[]).

20 difference([X|L],Set, [X]Z]) :—

21 not (member (X, Set)), !,

22 difference (L, Set,Z) .

23 difference([_|L],Set,Z):- difference(L,Set,?Z).

Antoni Ligeza Prolog 17117

