Recommendation Systems: Prediction of Web Site User Preferences

Sebastian Ernst!, Dominik Pacewicz?, Radostaw Klimek?

L Computer Science PhD student, Faculty of Electrical Engineering, Automatics, Computer Science and
Electronics, AGH-UST, Al. Mickiewicza 30, 30-059 Krakéw, sebi@selex.pl
2 domp @selex.pl
3 Laboratory of Computer Science, Department of Automatics, AGH-UST, Al. Mickewicza 30,
30-059 Krakéw, rklimek @agh.edu.pl

Abstract. The rapid development of information
propagation technologies, especially the Internet
has produced an overwhelming amount of data
and information. An average user has a hard time
to choose only the interesting and relevant items.

Retrieval of specific data is usually made pos-
sible by submitting queries to search engines. A
problem appears when a collection of data con-
tains similar items which cannot be evaluated us-
ing a uniform rating scale. It is especially appar-
ent in online shops offering books, music records
or films. Such items are rated on a purely sub-
Jective basis — it is impossible to provide a rating
scale that’s universal, but at the same time, takes
the preferences of individuals into account.

A recommendation system is a piece of soft-
ware used to predict the attractiveness of specific
items as perceived by specific users. Input data
is sparse and contains user ratings of items. Rec-
ommendation systems use, among other methods,
collaborative filtering. This method locates users
with similar preferences, based on already col-
lected item ratings. They are used to predict the
missing values in the customer/product matrices.
This enables the users to find items they other-
wise wouldn’t be able to locate.

There are two main problems related to imple-
mentation of collaborative filtering recommenda-
tion systems. The first one is data sparsity, which
greatly reduces relevance of the results, especial-
ly in initial stages of operation. The second one
is computational complexity of methods used.

This article shows and compares different ap-
proaches to implementation of recommendation
systems, discusses possible problems and de-
scribes the mathematical, statistical and comput-

ing methods of solving them. It also shows oth-
er applications of collaborative filtering, such as
remote education and web search engines and
shows directions of improvement of CF-based
recommendation systems.

1. Introduction The beginning of 1990s saw
the dawning of the age of the World Wide Web.
It was — and still is — hard to find anyone
who wouldn’t be impressed by the availability of
search engines and vast collections of literally all
kinds of data. However, it wasn’t long before the
amount of data could, and did, easily overwhelm
an average user of the Internet.

Traditional search methods rely on simple
content classification routines. For websites, that
would be keyword or full-text search. Online
shops, especially those dealing with books, films
or music, tend to rely on a uniform rating scale.
The accuracy of web search is largely dependent
on proper formulation of search queries, which
can be rather difficult. The real problem appears
where the relevance of results depends on the
taste of the user, and therefore ratings are differ-
ent for every single person.

Of course, it is possible to derive a pro-
prietary classification scheme to group similar
items — e.g. movie or music genres. That, how-
ever, doesn’t solve all the problems, firstly — be-
cause most people can’t tell what exactly their
favourite genres are, and secondly — because in
such scheme, every item would have to be first
evaluated and classified by a group of experts.

This is recommendation systems kick in. The
underlying idea is quite simple: we want a piece
of software that will collect item ratings from

users and apply them to other items in order to
match the taste of a particular person. This ap-
proach enables automatic classification of items,
usually making extra user input unnecessary.
Such a system uses previously collected data to
classify and recommend new items to users, so
data sparsity can be a problem, especially in the
initial stage of operation.

Recommendation systems are often used in
online applications, so special techniques have
to be used in order to minimize computational
complexity and maintain a short response time.

The following article presents several ap-
proaches, methods and applications used to
achieve this goal.

2. Collaborative filtering One of the methods
most often used to derive user-specific recom-
mendations from a subset of data is collabora-
tive filtering, first introduced in the mid eighties
[1]. The basic concept is similarity between users
and rated items. For instance, let’s say a user likes
movies A and B. We can assume that other users
who also liked those movies have a similar taste
to the user in question. On that basis, it should
be possible to provide the user with other movie
recommendations. [8]

2.1. Data representation In a typical recom-
mendation system, consisting of m users and n
items, data is represented as a m X mn user/item
matrix, R. In the simplest case, the matrix is
binary: element r;;, equals 1 if the user was in-
terested in a product or O otherwise. Usually, this
amounts to the fact of a customer purchasing a
given product. [6]

Some systems extend this idea by indicating
not only the fact of a user being interested in an
item, but also how satisfied they were with the
choice. This is done by introducing a rating scale
— either a discrete or, as proposed by the authors
of [9], a continuous one. In this case, before fur-
ther processing, the ratings need to be normalized
by subtracting their mean ratings among all users
and dividing them by their standard deviation.

2.2. Initial processing One of the problems of
collaborative filtering recommendation systems

is the fact that the ratings data is usually sparse.
In large systems, ratings from a single users en-
compass less than 1 percent of all available items
— usually less. This can make it difficult or even
impossible to provide ratings for a particular us-
er.

Another problem related to data sparsity is the
lack of transitivity. Let’s say user A correlates
with user B, and user B correlates with user C.
With a sparse dataset, we can’t assume user A
will correlate with user C, as they may not have
enough common rated items, which will addi-
tionally limit the capabilities of the recommen-
dation algorithm.

2.2.1. The ‘gauge set’ approach One approach
presented in [9], is to provide a uniform set of
items, rated — usually upon registration — by all
users. This set is called a gauge set and has to
meet several prerequisites. First of all, users will
rate the gauge set items based solely on their
descriptions, as they are assumed not to have had
personal experience with any of them. Therefore,
the descriptions have to be unbiased, preferably
short and as easy to understand as possible.

The authors claim that this method proved
to yield satisfactory results in their model im-
plementation — a joke recommending system,
Jester. There are, however, a few possible prob-
lems. Firstly, the efficiency of the initial user
profiling procedure depends on the selection of
items forming the gauge set. Ideally, their char-
acteristics should reflect the characteristics of all
items. However, in quickly-developing systems
(online shops, e-learning repositories), the gauge
set could prove irrelevant after a while, but it
couldn’t be changed, as only that would result in
inconsistent ratings for the ‘old’ and ‘new’ users.

Another thing worth considering is the feasi-
bility of actually getting users to rate the items in
the gauge set. This could be a problem in corpo-
rate or business-to-business services, as such ap-
proach could seem plainly unprofessional, as well
as in widely-available online systems, as users
are often discouraged by having to go through a
long registration/profiling procedure. Therefore,
in some cases it is better to use only ratings

provided by users on a normal basis, i.e. in the
course of system operation, even sacrificing ef-
fectiveness in the initial phase.

2.2.2. Computation of similarity Similarity
between users is usually determined by comput-
ing a Pearson correlation matrix of common-
ly rated items (or items which form the gauge
set). Each element of the matrix is the Pearson
product-moment correlation coefficient between
a user and an item.

If A is the normalized subset of R consist-
ing either of commonly rated items or the items
which form the gauge set, the correlation matrix
C' can be defined as [9]:

_ATA

n—1

C

Another approach to measuring user similari-
ty is to consider two users (¢ and j) as two vectors
in a n-dimensional space. In this case, the angle
will be narrow between similar users’ vectors and
wide between those of users whose preferences
differ.

-

+ = ij
Cii =cos(i,)) = 55—
5 = o8l) = e

Both methods result in a symmetric square
matrix, which defines the similarity between two
random variables — in our case, preferences of
two users.

2.2.3. Principal component analysis Al-
though a computed global similarity matrix well
represents similarities of users’ preferences, it
is quite difficult to analyse, as every single rec-
ommendation would require a lot of additional
lookups and calculations. Therefore, similarity
matrices are often subjected to dimension-
reducing transformations, among which the most
popular is principal component analysis (PCA).
Introduced in the beginning of the twentieth
century by Karl Pearson [2], it was later gener-
alized by Harold Hotelling [3], thus the common
alternative name — the Hotelling transform.

PCA is the optimal linear transformation for
reducing multi-dimensional data into a simpler

coordinate system, while keeping the subspace
with the greatest variance. In practice, calcula-
tion of components is performed by finding the
eigenvalues and eigenvectors of the covariance
matrix, described in 2.2.3. Eigenvectors with the
largest eigenvalues correspond to the most corre-
lated dimensions of the source data. In almost all
cases, a small number of eigenvectors constitute
a large part of the total variance.

Then, original data is projected onto a vec-
tor space with a reduced number of dimensions.
Usually, data is projected onto a two-dimensional
plane, as it enables easy clustering of data (e.g.
users) and makes it possible to create a plot for
visual analysis and representation.

PCA and eigenvector computation is used by
the method described in [9], hence the name.

2.3. Neighbourhood formation In order to
provide a specific user with personalised rec-
ommendations, we need to find other users with
preferences as similar as possible. In other words,
we want to form a neighbourhood for a giv-
en user, e.g. create a list of other like-minded
users, sorted according to similarity. Two most
commonly used types are central and aggregate
neighbourhoods. A central neighbourhood sim-
ply consists of a given number of users with
the highest similarity (computed as described in
2.2.3). An aggregate neighbourhood, consisting
of [elements, is constructed using the following
routine. In the first iteration, we select the user
that’s closest to the starting user. Then, in every
subsequent iteration, the algorithm computes the
centroid of the current neighbourhood and selects
the user that’s nearest to the centroid as the next
member, until the neighbourhood is of desired
size. [6]

3. Scalability and clustering Most online sys-
tems that could profit from implementation
of collaborative filtering routines develop very
quickly. For instance, an online shop isn’t un-
likely to exceed a million of items and users in
a relatively short time.

The response time for every web-based sys-
tems should be as short as possible. Compu-
tational complexity of nearest neighbour algo-

© \
\\ /
XQ © o \ \
o ,4 \ Per-user/per-neighbourhood
[e] (o]

recommendations

Original data) NG
e

\
\\\

4L

N

-

\(Per-cluster recommendations)

/N
/ N\

Reduced data

//

N /

Clustering [9]

Fig. 1. Basic operation stages of CF-based recommendation systems

rithms grows with both the number of items and
the number of users. [6]

3.1. Clustering In order to decrease the com-
plexity of computations, users in the system can
be arranged into clusters, according to similar
preferences. This is easiest to achieve after reduc-
ing the number of dimensions, e.g. using princi-
pal component analysis (2.2.3).

There are several clustering methods avail-
able. Two-dimensional data, as presented in [9],
can be easily grouped into clusters using a recur-
sive algorithm implementing rectangular clusters.
The size of the cells decreases near the centre
(origin) of the plane.

The algorithm is simple. First, the rectangle
enclosing all the points is bisected both vertically
and horizontally, in order to create four sub-cells.
Then, in every iteration, each of the four cells
which have the origin as one of the vertices is
subdivided into four new cells, until the desired
number of clusters is achieved.

There are other clustering methods for col-
laborative filtering, as described in [5]. The au-
thors have established that the accuracy can be
improved using Gibbs sampling, but the cur-
rent algorithms are very computionally expen-

sive. More efficient Gibbs sampling methods are
being developed.

3.2. Offline computation As shown above,
quick response, which is critical for online appli-
cations, is hard to achieve if all calculations have
to be done in real time. That’s why recommen-
dation systems are often split into two modules.

One, which is periodically run offline, per-
forms all the necessary calculations, including
similarity computation, dimension reduction and
assignment of users into clusters. This process
can be run with a lower priority and utilize the
idle processor time of the web server.

The second module operates online. For users
who have previously been using the system, all
that needs to done is retrieve the recommen-
dations computed using the offline module and
present them to the user. Therefore, the compu-
tational complexity is O(1).

Obviously, new users entering the system can-
not be provided with relevant recommendations,
as the system knows nothing about their prefer-
ences.

For algorithms using the ‘gauge set’ approach

(see 2.2.1), the procedure for new users looks as
follows [9]:

1. Ratings are collected for all items in the gauge
set,

2. PCA (2.2.3) is used to project the vector onto
the plane,

3. User is assigned to the appropriate cluster.

4. Applications and existing implementations
Collaborative filtering has a virtually endless
list of applications. However, there are some ar-
eas where collaborative filtering recommendation
systems are particularly useful.

4.1. E-commerce and taste-based evaluation
The most obvious application, which also served
the purpose of the example throughout this ar-
ticle, is e-commerce. Online shop usually offer
items which are subject to taste — this is most
clearly visible in case of books, music record-
ings, movies, etc.

Collaborative filtering is used by most large
online shops. Some well-known examples in-
cldue Amazon, Barnes and Noble, Netflix and
Hollywood Video. CF is also becoming increas-
ingly popular in non-commercial purposes. Au-
dioscrobbler is a service used solely for the pur-
pose of recommending music to users, based on
their preferences. Profiles are created automati-
cally, based on what the users listen to on their
computers. It also provides means of communi-
cations for users with similar tastes.

4.2. E-learning Electronic training and educa-
tion programmes are becoming increasingly pop-
ular. Due to their nature, they are largely based on
various repositories of learning objects. A learn-
ing object is any element that can be contained
within an e-learning course: a video, an image,
a map or a website. [4, 8]

In case of e-learning, recommendations are
computed based on the topic, as well as on prefer-
ences of a given user. E-learning developers can
therefore create courses which are best suited to
a given customer/student, and therefore improve
the efficiency of education.

4.3. Web search The World Wide Web contin-
ues to grow at an overwhelming pace. If it wasn’t
for efficient search engines, such as Google, most

users would have a hard time trying to find
any useful information at all. Unfortunately, web
search engines, being purely text-based, often
provide many results which seem relevant, but
really are useless.

There are two problems related to implemen-
tation of collaborative filtering in web search en-
gine. Firstly, different users use different search
queries to locate the same information. The prob-
lem of synonymy has been pointed out in [6].
Therefore, web search engines would have to per-
form additional filtering of search queries, based
on known synonyms.

The other problem is that there are no means
of monitoring user sessions among multiple
servers. All statistics a search engine can collect
are “user clicks” — which results are usually cho-
sen by the user for a given query. There are some
attempts to provide a client-side platform for col-
lecting automatic feedback from users. This is the
case with Google Toolbar, which monitors users’
behaviour in regard to search queries and sends
in anonymous statistics back to the server.

5. Evaluation methods Evaluation of recom-
mendation systems is a difficult task. Almost all
recommendation systems perform differently for
different data sets. One of the main characteris-
tics of a data set is the number of users in relation
to the number of items.

5.1. System expectations Additionally, recom-
mendation systems created for different purposes
have to meet different requirements. [7] provides
a simple classification of recommendation sys-
tems, according to their purpose. Usually, a rec-
ommendation system is expected to rule out as
many irrelevant results as possible, even by sac-
rificing some which are good. This approach is
described as Find Good Items. It also provides
an example of a lawyer looking for precedents.
In this case, the goal is not to overlook a single
case which could prove useful — a Find All Good
Items approach.

Another goal is to recommend a sequence of
items that’s attractive as a whole, rather than fo-
cusing on individual, but not well-matched rec-
ommendations. This is often used by personal-

ized Internet radio stations. Authors of [7] aren’t
aware of any systems built specifically for this
task.

Recommender credibility is often a very im-
portant issue for users. Users often ‘play’ with
systems, in order to evaluate the algorithms use
and system responsiveness. Some systems are op-
timized to recommend items the user doesn’t yet
know about — as useful as it may be, this feature
could cause the results to be perceived by some
users as inaccurate.

5.2. Accuracy metrics There are several for-
mal accuracy metrics which can be used to eval-
uate recommendation systems. One of the most
commonly used is Mean Absolute Error (MAE),
which measures absolute deviation between the
predicted value and the actual rating.

This, as described in [8], is usually performed
by hiding one of the ratings from the dataset and
compare the prediction results with the actual
value.

Classification Accuracy Metrics measure the
frequency of correct recommendations and are
appropriate for systems with binary user prefer-
ences. Such metrics don’t measure the accuracy
of predictions itself — just the classification of
items. They can, however be challenged by data
sparsity.

Other metrics include precision and recall re-
lated measures, ROC curves and ad-hoc classifi-
cation accuracy measures, as described in [her-
locker].

6. Conclusion Recommendation systems have
a practically endless list of applications. Soon, it
will be impossible to create a good e-commerce
tool or a search engine without implementing
collaboration filtering routines.

Two aspects of recommendation systems that
still need improvement are scalability and meth-
ods of dealing with sparse datasets. The answer
to both these problems is reduction of mutidi-
mensional data to a lower number of dimensions
and grouping of items and users into clusters.
Data should be reduced as early after collection
as possible, while maintaining a low rate of data
loss.

There also is space for improvement in ini-
tial user profiling. Systems which don’t incorpo-
rate such procedures are unable to provide rele-
vant suggestions before the user has, for instance,
purchased at least several items. However, ini-
tial profiling procedures (e.g. using the ‘gauge
set’ approach) should be as clear and not time-
consuming as possible. We are seeking methods
to develop efficient user profiling procedures that
could be incorporated into to the user registra-
tion procedure. Surveys have shown that users are
likely to accept simple questions with two alter-
native answers. In order to automate this process,
we are looking for ways of preparing such ques-
tions based on already collected user evaluation
data.

References.

[1] P. Resnick, N. Iacovou, M. Suchak, P.
Bergstrom, J. Riedl, Grouplens: An open ar-
chitecture for collaborative filtering of netnews,
(Proceedings of the 1994 ACM conference on
Computer supported cooperative work).

[2] K. Pearson, On lines and planes of closest fit
to systems of points in space (The Philosophi-
cal Magazine, Series 6, Volume 2, Number 11,
1901).

[3]1 H. Hotelling, Analysis of a complex of statistical
variables into principal components (Journal of
Educational Psychology 24, 1933).

[4] S. Downes, Learning objects: Resources for dis-
tance education worldwide (International Re-
view of Research in Open and Distance Learn-
ing, 2001).

[5] L. Ungar, D. Foster, Clustering methods for col-
laborative filtering (Proceedings of the Work-
shop on Recommendation Systems. AAAI
Press, 1998).

[6] B. Sarwar, G. Karypis, J. Konstan, J. Riedl,
Analysis of recommendation algorithms for e-

commerce (ACM Conference on Electronic
Commerce, 2000).

[71 J. Herlocker, J. Konstan, L. Terveen, J. Riedl,
Evaluating collaborative filtering recommender
systems (ACM Transactions on Information Sys-
tems, 2004).

[8] M. Anderson, M. Ball, H. Boley, S. Greene,
N. Howse, S. McGrath, D. Lemire, RACOFI:
A Rule-Applying Collaborative Filtering Sys-
tem (International Workshop on Collaboration
Agents: Autonomous Agents for Collaborative
Environments, 2003).

[9] K. Goldberg, T. Roeder, D. Gupta, C. Perkins,
Eigentaste: A constant time collaborative filter-
ing algorithm (Information Retrieval, 2001).

