
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005 903

Open Source Versus Closed Source: Software Quality
in Monopoly and Competitive Markets

Srinivasan Raghunathan, Ashutosh Prasad, Birendra K. Mishra, and Hsihui Chang

Abstract—The open source model of software development has
received substantial attention in the industry and popular media;
nevertheless, critics frequently contend that open source softwares
are inferior in quality compared to closed source softwares be-
cause of lack of incentives and project management, while propo-
nents argue the opposite. This paper examines this quality debate
by modeling and analyzing software quality, demand, profitabil-
ity, and welfare under open and closed source environments in
monopoly and competitive markets. The results show no dominant
quality advantage of one method over another under all circum-
stances. Both open source and closed source qualities decrease in
a competitive market. Conditions under which each method can
generate higher quality software are examined.

Index Terms—Competition, open source, software quality.

I. INTRODUCTION

R ECENT years have seen an increasing interest in the
open source movement as a new paradigm for software

development. Open source refers to the use of shared source
code, open standards, and collaboration among software de-
velopers and users worldwide to build software, identify and
correct errors, and make enhancements [1]. Unlike the tradi-
tional (proprietary) paradigm of software development, users
have free access to the source code, which they can modify
to correct software bugs, port the software to new hardware
or software platforms, solve additional problems, create add-on
software programs, or simply use it for free [2]. Enhancements
submitted by individual users are fed back to the original source
code for public use. This approach has led to the development
of the Linux operating system, Apache web server, Perl pro-
gramming language, Sendmail electronic mail transfer agent,
domain name system Berkeley internet name domain (DNS
BIND) system, and other Internet infrastructure software that
power some of today’s most powerful electronic commerce
websites including Yahoo, Cisco Systems, and C-Net. Table I
provides short descriptions of some commonly used open
source software.

Manuscript received November 5, 2003; revised May 28, 2004 and Septem-
ber 20, 2004. This paper was recommended by Associate Editor H. R. Rao.

S. Raghunathan and A. Prasad are with the School of Management, Univer-
sity of Texas at Dallas, Richardson, TX 75083 USA (e-mail: sraghu@utdallas.
edu; aprasad@utdallas.edu).

B. K. Mishra is with the Anderson Graduate School of Management,
University of California at Riverside, Riverside, CA 92521 USA, on leave
from the School of Management, University of Texas at Dallas, Richardson,
TX 75083 USA (e-mail: barry.mishra@ucr.edu).

H. Chang is with the Anderson Graduate School of Management, Univer-
sity of California at Riverside, Riverside, CA 92521 USA (e-mail: hsihui.
chang@ucr.edu).

Digital Object Identifier 10.1109/TSMCA.2005.853493

Championed by the philosophy that software is a public good
and should be freely shared, used, and codeveloped by all, the
open source movement challenges the traditional paradigm of
software as a proprietary good, to be guarded carefully via
copyrights or patents and licensed or sold to users for profit.
The traditional paradigm (referred to as “closed source”) is
based on the assumption that software development is a highly
specialized process, managed best by a localized team of highly
qualified developers, careful project management, and occa-
sional enhancements in the form of new releases. In contrast,
open source software is based on the principles of continuous
improvement (implemented via frequent releases), collabora-
tion among developers and users irrespective of geographical
locations or employing firms, and adherence to open standards
(implemented via open source licenses). As described by [3],
open source represents a “bazaar style” of software develop-
ment, in contrast to the “cathedral style” emphasized by closed
source software development.

One of the frequent criticisms of open source softwares is
that they are of lower quality compared to their closed source
counterparts. First, critics contend that the quality of open
source software suffers from the “free rider” effect often as-
sociated with public goods, where each user prefers others
to spend effort in improving the public good and then share
in the benefits rather than investing in improvements them-
selves. Thus, improvement depends on the altruism of a few.
Furthermore, attempts at commercial exploitation of freely
donated software can result in an amelioration of altruis-
tic tendencies [4]. However, proponents claim that software
contributors are not necessarily altruistic; programmers con-
tribute to the source code for social recognition and pres-
tige in the open source community and to signal their talent
to prospective employers, which may subsequently translate
into job, consulting, or other career opportunities [5]–[7]. A
discussion of possible alternative motivations of open source
programmers is provided by [8]. The focus here will be
on pecuniary, or economic, motives as opposed to altruistic
motives [7].

Second, critics suggest that the lack of formal project man-
agement in “bazaar style” software development undermines
the product’s quality. However, open source proponents argue
that the quality of open source software stems not from its
management but from its openness. Free access to the source
code ensures that the code is tested and retested by a worldwide
user base, leading to timely identification of bugs and opportu-
nities for software enhancements, and is hence more reliable.
Limited coordination in an open source environment may lead
to some duplication of effort between programmers trying to

1083-4427/$20.00 © 2005 IEEE

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

904 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

TABLE I
EXAMPLES OF OPEN SOURCE SOFTWARE

correct the same error, and hence, it is unclear whether having
multiple users spend resources on improving a common soft-
ware necessarily improves its quality over having a closed firm
with coordinated efforts and formal project management. While
process maturity concepts such as the capability maturity model
(CMM) are not directly applicable to open source projects,
elements of these approaches such as processes for code sub-
mission, peer review, and user involvement are strictly fol-
lowed, particularly in larger projects, which also maintain good
documentation.

The proponents of both paradigms point to the inherent in-
centives built into respective approaches to build quality soft-
ware, with respect to software pricing and the approach to
software development, e.g., cathedral style versus bazaar style
[9]. A related issue of interest is whether the society as a
whole is better off under the closed source or the open source
paradigm. The free nature of open source software may benefit
consumers, but if the quality is low, then the value consumers
derive from the software will also be low. From a society
perspective, the profit realized by the closed source software
developed is also important.

The objectives of this research are threefold: 1) to analyze
the impact of inherent incentive structures of the closed and
open source approaches on software quality; 2) to determine
whether the open source or closed source approach always
results in a superior software quality and, if not, to identify
the conditions under which each approach is better; and 3) to
compare the societal welfare, defined as the sum of developer
profit and consumer surplus, in the open source and closed
source paradigms. The game theory was used to perform the
analysis. Software quality is analyzed in noncompetitive open
source and closed source markets, and then in a competitive
market where both open source and closed source softwares
compete for market share.

The findings indicate that despite the “free” nature of open
source software, built-in incentives for software developers
in the open source model can enhance software quality to
be comparable to or exceed the closed source quality. The
open source model becomes attractive when 1) a large pool of
programmers is willing to work on the open source software;
2) the programmers’ efforts are publicly recognized; and 3)
open source programmers perceive code contribution to be a fun
task or a hobby. If the open source and closed source softwares
have the same quality, then the social welfare is higher under
the open source than the closed source approach. If a closed
source software and an open source software compete in the
same market, then the open source quality is independent of
closed source software quality but is lower than the quality
when there is no competition. However, under competition,
the closed source quality decreases as the open source quality
increases. The social welfare is higher under competition than
in a monopoly.

For purposes of model tractability, several factors governing
the closed source and open source approaches are ignored in
this paper. Demand for software may depend on factors such
as functionality, standards, support, and legal issues. In the
proposed model, demand is a function of only quality and price.
While factors such as standards and licensing arrangements are
also important considerations in a firm’s decision to adopt the
software, these factors are covered to the extent they impact
utility for the software, in which case they fall under the rubric
of “quality.”

The remainder of the paper proceeds as follows. Section II
reviews quality debate surrounding software development,
specifically focusing on open source software. Section III dis-
cusses the modeling framework and assumptions. Section IV
examines how quality improvement comes about in a monopoly
market with only one open source software. Section V

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

RAGHUNATHAN et al.: OPEN SOURCE VERSUS CLOSED SOURCE: SOFTWARE QUALITY IN COMPETITIVE MARKETS 905

investigates quality improvement when closed source software
is in monopoly and compares the result to those in the preceding
section. Section VI models market competition between open
source and closed source softwares. Section VII concludes with
discussion and directions for future research.

II. THE QUALITY DEBATE IN OPEN SOURCE SOFTWARE

Software quality has been extensively studied in software
engineering. In this literature, the quality of a software is
measured along dimensions such as correctness, understand-
ability, completeness, conciseness, portability, consistency,
maintainability, testability, usability, reliability, structuredness,
and efficiency [10], [11]. Despite advances in software process
innovations such as object-oriented analysis and design, func-
tion point analysis, and CMMs, the software industry has
continually been plagued by an inability to generate quality
software products [12], [13]. It is noted in [13] that, “In the
last 15 years alone, software defects have wrecked a satellite
launch, delayed an airport opening for a year, destroyed a
Mars mission, killed four Marines in a helicopter crash, in-
duced a U.S. Navy ship to destroy a civilian airliner, and shut
down ambulance systems in London leading to as many as
30 deaths.”

The complex software systems that have become the central
nervous system of firms make the high quality of a software
vital. They not only control a firm’s everyday operations but
also enable or constrain the ability to make and implement
strategic business decisions [14]. Though software quality in-
vestments can reduce overall software life cycle costs by mini-
mizing rework later on, many software manufacturers sacrifice
quality in favor of other objectives such as shorter development
cycles and meeting time constraints [15]. As one software
manager said, “I’d rather have it wrong than have it late. We
can always fix it later” [15]. The traditional conception of
software quality is centered on a product-centric conformance
view of quality [14]. The focus of this perspective is to re-
duce variability (by minimizing errors in design and coding)
and to conform to predefined specifications (e.g., in terms of
error rates, speed, transaction load, etc.). Benchmarking soft-
ware based on predefined specifications assumes that it is
possible to specify ex ante the entire range of features expected
of a software. However, in reality, different users have differ-
ent expectations of the same software and users’ expectations
of software evolve with time. For instance, some users may
view performance and reliability as key features of a soft-
ware while others may consider ease of installation and main-
tenance as key features of the same software. The authors will
assume that howsoever quality is described, it may be measured
from the customers’ viewpoint as a utility providing attribute
such that a higher quality product is preferred by all users.

The authors can make a qualitative comparison of how
quality might vary between open source and closed source soft-
wares. Open access to the source code allows greater opportu-
nities for customizing an open source software to the specific
needs of individual users than a closed source software. In fact,
such customization is encouraged and widely practiced by the
open source community, while closed source softwares that

provide clients with access to the source code (e.g., SAP R/3)
proclaim that any modification to the source code will result
in loss of customer support, thus limiting the product’s custom-
izability to a predefined set of options. Furthermore, continuous
innovation and upgrades require soliciting suggestions and
feedback from software users. While open source programmers
actively solicit inputs from users worldwide via listservs, usenet
groups, and bulletin boards, closed source software developers
have limited interaction with a small group of users. In practice,
upgrades to open source software are released much more fre-
quently than that of closed source software, and consequently,
open source software such as Linux seems to have devel-
oped faster than comparable closed source software such as
Windows NT. As an example, Linux supported 64-bit process-
ing since 1995 while NT became 64-bit ready in 2000, Linux
supports the latest networking standards such as Ipv6 but NT
does not, and Linux provides ports to more software devel-
opment environments than does NT. However, open source
projects do seem to lag their closed source counterparts in
coordination of developers and project management, leading to
some duplication of efforts by multiple developers, inefficient
allocation of time and resources, and lack of attention to mun-
dane software attributes such as ease of use, documentation, and
support, all of which impact conformance to specifications.

Indeed, industry comparisons of open source versus closed
source softwares are inconclusive or slightly in favor of open
source. For instance, a comparative evaluation of Linux and
Windows NT (respectively, open source and closed source
server operating systems) by [16] found that Linux is signifi-
cantly superior to NT in three out of nine dimensions (availabil-
ity, user satisfaction, and value for money), somewhat superior
in three other dimensions (operational features, support, and
scalability), comparable in two dimensions (interoperability
and functionality), and inferior in one dimension (application
availability). Some system administrators prefer Linux over
Windows NT because of Linux’s less hardware configuration
requirement, lightweight nature, better multiprocessing capa-
bilities, and networking support [17]; however, others prefer
Windows NT because of better security, ease of management,
and superiority in Java performance.

The issue of cost comparison between an open source and
a closed source has also been of interest to organizations, but
there are few academic studies available on precise and objec-
tive comparisons. It is still a new issue for academics. Among
open source softwares, Linux is the one that has received the
most attention. A few reports exist comparing it to Windows,
but the results are inconclusive. For example, following is the
abstract of an IDC report [18] sponsored by Microsoft on the
total cost of ownership (TCO):

Linux is widely regarded as “free” because there is no or
little cost associated with software acquisition. However,
after taking into account all costs, notably IT staffing,
does Linux truly come at a lower cost than competing
platforms, such as Windows? IDC has completed a study
of five common workloads in enterprise computing that
challenges the common industry perception that Linux is
“free.” Our in-depth study suggests that Microsoft Win-
dows 2000 offers lower total cost than a Linux solution

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

906 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

TABLE II
COST OF OWNERSHIP DATA (IDC 2002)

Windows 2000 and Linux Server Environment Five year total cost of ownership summary view for 100 supported users by workload and cost category
($) as reported by IDC 2002

in four of the five workloads common to most corporate
IT environments. In these four workloads (network in-
frastructure, print serving, file serving, and security appli-
cations), the cost advantages of Windows are significant:
11–22% less over a 5-year period. The cost advantages
are driven primarily by Windows’ significantly lower costs
for IT staffing, generally the largest single component of
IT costs. For the fifth workload, Web serving, Linux had
a cost advantage of 6% compared with Windows 2000
over the 5-year period. IDC’s study confirms that low
initial software acquisition costs are only one factor, not
the deciding one, in determining the 5-year total cost of
ownership (TCO) for the two operating environments.
The data reported by IDC are given in Table II.
Contrary conclusions are reported by [19], as shown in

Table III. This also takes into account software, hardware,
support, and maintenance costs, and found that Linux was the
least expensive platform to deploy and operate. Although some
initial costs were higher at points, the ability to massively scale
the product horizontally without paying additional licensing
fees can yield significant cost savings over the long term.

The lack of jury on the open source versus closed source
debate is reflected in the fact that closed source firms such as
IBM and Sun that profess value in the open source philosophy
and routinely commit time, resources, and manpower to open
source projects are not yet ready to abandon their internal
closed source projects.

When an individual programmer submits a proposed im-
provement to an open source software, a coordinating commit-
tee consisting of experienced programmers evaluates the merits
of that proposal, examines possible side effects of the suggested
improvement, compares it with alternative ideas submitted by
other programmers, and finally decides whether to incorporate
the proposed improvements to the software, and if so, the
enhanced version is distributed as a new software release. As
long as developers return some of their improvements to this
committee, the software will continue to improve. Submission,
evaluation, and acceptance of improvements can be viewed as
a tournament, where one improvement is accepted from a set of
submissions, and the programmer submitting that improvement
gains visibility, respect, and future prospects within and outside
the open source community.

TABLE III
COST OF OWNERSHIP DATA (ROBERT FRANCES GROUP)

Finally, as suggested by the open source examples listed
in Table I, the open source model appears most viable for
generic context-independent applications such as operating
systems, network software, word processors, and spreadsheets,
where no specialized user inputs are required. The domain of
study for open source is likewise restricted to general purpose
software used by a large number of end users who are price and
quality takers (as opposed to a specific use software contract
requiring exact price and quality specifications). The model is
thus not applicable for highly specialized business applications
such as customized procurement systems or payroll systems,
where programmers cannot code without knowing the users’
requirements, and the quality of the software product is
determined by its meeting contractual specifications. Further,
open source programmers are less likely to contribute to highly
specialized applications because the small user base for such
software limits the amount of rewards programmers can derive
by contributing code.

The authors summarize this section with Table IV listing the
key features and relevant differences between open source and
closed source softwares. These features provide the conceptual
underpinnings for modeling open source and closed source soft-
ware development within an economic framework. Also note
that open source software development resembles a tournament
[20], [21] whereas closed source development resembles the
standard production model of the firm. Using this intuition, the
authors proceed to modeling software quality developed under
the two methods.

III. MODELING FRAMEWORK AND ASSUMPTIONS

The modeling framework is based on models of quality and
price-based competition in a vertically differentiated market.

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

RAGHUNATHAN et al.: OPEN SOURCE VERSUS CLOSED SOURCE: SOFTWARE QUALITY IN COMPETITIVE MARKETS 907

TABLE IV
CONCEPTUAL UNDERPINNINGS OF THE MODELING FRAMEWORK

Quality and price-based competition have been analyzed in a
variety of settings such as service delivery [22]–[24], marketing
and supply chain channels [25], and economics. The primary
difference between this paper and prior work in this area is that
the authors model the impact of incentive structure on software
quality whereas prior research assumes that firms can set any
quality level they desire. This section presents a software devel-
opment model from both consumer and developer perspectives.
Table V provides a summary of the notation used in this paper.

On the consumer side, the authors assume that the consumer
valuation for the software at quality Q takes the form

V = tQθ. (1)

The parameter θ ∈ (0, 1) captures the declining marginal
value of quality. That is, a consumer’s value for a software is
a concave function of its quality. The model assumes a scalar
measure of quality, which could be any one or an aggregate
of some or all of the software quality measures discussed
in Section II. If the heterogeneity parameter t is uniformly
distributed between 0 and 1, the demand function is obtained
for the software at quality Q and price P , given a total of D
consumers

S(Q,P) = D

(
1 − P

Qθ

)
. (2)

On the developer side, the software is developed by a set of
programmers. Programmer i chooses a planned quality output
qi by applying the requisite effort. However, software im-
provements need not follow deterministically from the amount
of effort applied. Improvements may come randomly, in a
serendipitous manner, by “stroke of luck.” Additionally, some
randomness is inherent in the subjective nature of the evaluation
process. Therefore, the evaluated quality Qi is modeled as a

TABLE V
LIST OF MAIN NOTATION

random variable with a deterministic component (function of
programmer effort) and a random term. Thus

Qi(qi) = qi + εi. (3)

The cumulative distribution function (cdf) of Qi is denoted
FQi

. Programmers’ costs C(qi) are assumed to be increasing
and convex, i.e., C ′(qi) > 0 and C ′′(qi) > 0. The cost of effort
is typically considered to be convex by economists. Compared
to spending the first hour on a project, spending an additional
hour after having spent say 8 h is more difficult due to phys-
ical and mental fatigue and the press of other duties. Also,
initial improvements are easier to make because they are more
obvious—like low-hanging fruit—compared to finding later
improvements. Among convex functions, the quadratic form is
selected for its tractability.

Programmers differ in their skill and experience. Presum-
ably, all programmers can ultimately get a job done, but the
more skilled and experienced ones will find it less costly in
terms of time and effort to do so. One can thus differentiate pro-
grammer types by their cost of programming parameter. For
simplicity, the authors assume two types, high cost (H) or
low cost (L); however, this simplification is not critical to the
results here. The authors denote the number of programmers in
high- and low-cost types by NH = βN and NL = (1 − β)N ,
respectively, where N is the total number of programmers

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

908 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

working on the software and β ∈ [0, 1] is the proportion of
high-cost programmers.

For the same planned output quality, a low-type programmer
incurs a lower cost compared to a high type. More specifically,
the programmer’s cost of quality is specified as

C(qH) =
cλHq2

H

2
or C(qL) =

cλLq2
L

2
(4)

depending on the programmer’s type. In this specification, c is
a cost parameter normalized to 1 for the closed source model
and λH > λL > 0 indicates the relative costs for the high-
and low-cost programmers. The parameter c will likely take a
value of less than 1 in the open source model. This is because
open source programming is viewed by some programmers as
a hobby or it may be done for altruistic motives [7].

The software’s aggregate quality is proportional to the sum
of the quality choices of the participating programmers. Partic-
ipation can vary from a handful in small projects to hundreds
of programmers such as in the case of the Apache web server
[26]. Not all of them gain economical rewards. In a study of
the Apache web server project, [6] concluded that higher status
in a merit-based ranking of contributors is associated with sig-
nificantly higher wages. Although, in the model here, only the
top-ranking programmer obtains a reward, it can be modified so
that there are rewards for several top-ranking contributors.

The effective overall quality is α
∑

qi, i.e., the sum of
individual qualities multiplied by a coordination parameter. The
reason for summing qualities is that large programs are written
in a modular manner. Modern programming languages such as
C++ and Java are well suited for collaborative environments.
The reason is that they use object-oriented programming so
that the program is modular, and modules can be independently
written, tested, and modified. In addition, there exist large
libraries of programs that can be incorporated into the current
project, greatly reducing programming time. Another feature
of these languages is their error handling capabilities. On en-
countering an error, the entire program does not hang, but it
gives the signal that an error has been detected so that it can be
debugged. The user obtains utility from the parts of the pro-
gram that work but is denied utility from features that are
buggy. The authors assume that the net utility, which is a mea-
sure of the overall quality of the program, is the sum of these
utilities, which is to say that the overall quality is the sum of the
individual qualities.

The proportionality constant α accounts for the coordination
between programmers. Thus, when lack of coordination leads
to overlap of programming efforts, the overall quality is not
improved to the same extent as when the effort is coordinated.
Closed source software development encourages and facilitates
close collaboration between programmers. The reason why
open source projects might be less coordinated is that the
contributing programmers are located in different locations and
operate on a voluntary basis. They have different motivations
and capabilities. As a result, the open source project generally
works without explicit planning or schedules. However, coor-
dination might not be too poor either. In particular, most Open
Source projects have a team leader who coordinates the volun-

teers, assigns tasks and selects submissions for improvements,
and invests a lot of time in management. Larger projects, such
as Apache, have a formal core development team [26]. Fur-
thermore, there is some formalization from the fact that many
Open Source projects are listed on http://SourceForge.net or
similar hosts, which provide tools such as concurrent versioning
system (CVS), mailing lists, and discussion forums. These may
be considered as ad hoc coordination mechanisms [27].

The authors normalize the value of α to 1 in the case of
an open source software, while for a closed source software,
α is likely greater than 1 because the closed source approach
is designed to achieve a coordinated and synergistic outcome.
However, from a modeling perspective, the authors allow the
coordination cost parameter to take any value of fraction or
multiple. This implies that Open Source coordination can be
greater than or lower than in closed source.

The utility specification for programmers, for a reward
amount y, is given by

w(y) = yν (5)

where ν ∈ (0, 1) is the risk aversion parameter. An individual
or entity is defined to be risk neutral, risk averse, or risk seeking
if the marginal utility from its payoff is a constant, decreasing,
or increasing function, respectively [28]. The power function
specification used here, and earlier for modeling the consumers’
utility, is widely used in the economics and business literature
for capturing risk aversion, e.g., [29].

The model descriptions above apply to both open source and
closed source software developments. The difference between
the two approaches lies in the differences in parameter values
and in the manner in which the programmers are rewarded
for their efforts. In the case of an open source, programmers
compete by participating in a tournament for recognition. In the
case of a closed source, the firm shares a part of its profit with
its programmers.

Next, the authors compare the qualities of open and closed
source softwares in monopoly and competitive markets.

IV. QUALITY UNDER OPEN SOURCE

The open source model is examined first in a noncompetitive
market. The discussion of the noncompetitive market is im-
portant. First, it provides a baseline for comparing competitive
results. Second, software markets tend to exhibit preferences
towards single dominant firms. Finally, in an early state of soft-
ware development, the software is often sheltered or isolated
from competition within a niche market of innovators and early
adopters. The authors assume that the open source environment
consists of a set of NOS ≥ 2 programmers that submit im-
provements to the open source code. A coordination committee
costlessly evaluates submissions and selects a winner. The role
of the coordination committee may be formal or informal. For
instance, the winner may be selected informally through mutual
consensus among open source users, while a rigid hierarchical
structure may govern which improvements, or variations of an
improvement, will be incorporated into the software, as in the

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

RAGHUNATHAN et al.: OPEN SOURCE VERSUS CLOSED SOURCE: SOFTWARE QUALITY IN COMPETITIVE MARKETS 909

case of Linux. Let DOS be the number of open source users.
Since the software is in a noncompetitive market and free, the
entire market may be considered adopters of the software, so
that DOS is equal to the size of the market D.

The winning programmer obtains a reward valued at R(D)
with no reward for the rest of the field. In the event of a
tie, the winner is randomly chosen. The reward may include
social recognition and prestige in the open source community,
job offers from firms, consulting opportunities, selection to the
board of directors of open source firms, and so forth [7]. Lerner
and Tirole [7] propose that open source programmers have two
incentives to participate: the ego gratification incentive and the
career concern incentive. The latter is a pure monetary concern
and refers to future job offers, and shares in commercial open
source companies. The ego gratification incentive stems from
a desire for peer recognition. Both incentives increase with the
number of users of the open source software; therefore, since
reward is a function of the total number of users of the open
source software, R(D) can be interpreted as pertaining to both
ego gratification and career advancement. The value of this
reward increases with the size of the user base, i.e., R′(D) > 0.

Programmer i submits an entry with the expected payoff

Ui = p(qi, q−i)R(D)υ − COS(qi) (6)

where p(·) is the probability of the programmer winning the
tournament and q−i is a vector of the endogenously determined
planned qualities of the remaining submissions. The probability
of any programmer winning the tournament is the probability
that their entry is evaluated better than the remaining NOS − 1
entries, i.e., for programmer i

p(qi, q−i) = prob [qi + εi ≥ max{qj + εj}j �=i] . (7)

To evaluate this probability, the authors need to specify
the distribution of max{qj + εj}j �=i (details given in the
Appendix). Having done so, the authors can substitute (7)
into the programmer’s utility function and obtain the quality
choice of the programmer and the expected software quality.
Proposition 1 summarizes the results.
Proposition 1: The optimal planned quality for each pro-

grammer qOS is the solution of the NOS equations

∂p(qi, q−i)
∂qi

R(D)υ − ∂COS(qi)
∂qi

= 0, i ∈ [1, NOS].

The expected quality of the winning software is
∫∞
0 [1 − FYN

]
−
∫ 0

−∞ FYN
, where FYN

≡
∏NOS

j=1 FQJ
and FQj is the cdf of

Qj (proofs given in the Appendix).
Proposition 1 provides a general characterization of soft-

ware quality in the open source model. However, more specific
insights require imposing more structure to this proposition.
For this purpose, the authors make the following assumption.
Tournament Winner Assumption: The probability of pro-

grammer i winning the tournament is given by

p(qi, q−i) =
qi

NOS∑
j=1

qj

. (8)

This probability can be derived from Proposition 1 with a
specification of the random variable based on the Gumbel dis-
tribution [30]. The above assumption has been used in the tour-
nament literature [21], the literature on patent races [31], and
the choice literature [30], [32]. Further, it is extensively used
in competitive models as the multiplicative competitive interac-
tion (MCI) model [33].

Although it is intuitive that high-cost programmers have a
lower probability of winning, they do not voluntarily drop out.
The first-order condition is

R(D)υ

(
NOS∑
j=1

qj − qi

)
[

NOS∑
j=1

qj

]2 − cλiqi = 0. (9)

And note that if qi = 0 in this expression, indicating the
programmer dropped out, the left-hand side remains positive,
indicating that the condition is not satisfied. Thus, the solution
is bounded away from zero for all programmer types, implying
participation by both high- and low-cost types. Equations for
the high- and low-cost programmers can be written and solved
to yield Corollary 1.1.
Corollary 1.1: From Proposition 1 and the tournament win-

ner assumption, the ratio of high- and low-cost programmers’
planned qualities is qH/qL = λL/λH . The quality of the soft-
ware is QOS =

√
(NOSR(D)υ/c)((β/λH) + (1 − β/λL)).

Social welfare is DQθ
OS/2 (proof given in the Appendix).

This result leads to the following interesting insights.

1) From Corollary 1.1, the quality improvement QOS is
increasing in ν, NOS, and D, and decreasing in β and c.
Lower risk aversion leads to higher quality levels because
the reward has greater expected utility for the program-
mers. A greater number of programmers and a larger frac-
tion of highly productive programmers increase quality
because of the higher cumulative quality. Improvements
due to D follow from the logic that if reward from effort
is increased, programmers are motivated to work harder.

2) A particularly interesting result is that the quality of open
source software is decreasing in c. Critics contend that
open source software development is dependent upon
people who consider it a hobby rather than a serious pur-
suit, and hence, quality may suffer. In contrast, the model
here suggests that such hobby considerations decrease
the programmer’s cost of effort, and thereby, increase the
quality of open source software.

3) The role of NOS in quality improvement can have two
effects. Larger numbers of programmers decrease the
likelihood of any individual obtaining the reward and,
therefore, act as a disincentive to effort. At the same
time, more programmers will provide a larger number
of improvements that cumulatively lead to higher quality
software. Since the quality expression is increasing in the
number of programmers, the latter is the dominant effect.

4) Some open source communities may require a critical
quality threshold in addition to a programmer winning
the tournament in order to realize any reward. For a

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

910 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

quality threshold Q∗, the expected reward is p(QOS ≥
Q∗)p(qi, q−i)R(D)υ , not p(qi, q−i)R(D)υ . Although the
analytical solution is intractable, it can be seen that a
quality threshold is detrimental to the open source soft-
ware quality since the reward is effectively reduced. If
the quality threshold is sufficiently high, it is possible
that the open source model may suffer from the “public
good” problem because programmers unwilling or unable
to meet the quality threshold may simply stop making
contributions. When the threshold increases, the effective
reward decreases, causing the individual programmer ef-
fort and the total quality to decrease. This, in turn, reduces
the probability that the quality will be higher than the
threshold, leading to a death spiral.

5) A question related to programmer heterogeneity is
whether open source quality can be improved if there
is a more heterogeneous population of programmers. By
setting λH = 1 + ς and λL = 1 − ς and examining the
sensitivity of quality to ς , it can be seen that

sign
[
∂QOS

∂ς

]
= sign

[(√
β −

√
(1 − β)

)

− ς
(√

β +
√

(1 − β)
)]

. (10)

Thus, if there are more high-cost than low-cost program-
mers (i.e., β > 1/2), the quality can improve with greater
difference in programming costs between programmer types
(i.e., higher ς). On the other hand, if the proportion of high-
cost programmers is small, greater cost differences reduce the
software quality. In the latter case, it is better if programmer
abilities are close to the average ability within the group.

V. CLOSED SOURCE QUALITY AND

QUALITY COMPARISONS

In closed source software development, a dedicated team of
programmers is maintained to design and improve proprietary
software code. However, the effort input by individual program-
mers is expensive to monitor, as discussed in the principal-agent
literature in economics (e.g., [34]). Furthermore, it may be the
case that only team outcomes are observable but not individual
outcomes. It is well documented in the literature on team
compensation that precisely knowing the effort expended by
members of the team is difficult for an outside manager [35]. On
the other hand, depending on inside members to regulate and
report upon each other creates even more complicated incentive
mechanisms. This lack of observability, for example, creates the
well-known problem of free-riding, internal politics, trying to
take credit for other’s work, and the myriad of other problems
that managers have to deal with. Second, within a closed source
environment, programmers collaborate closely and the tasks
cannot be made entirely independent. Itoh [36] has noted that a
principal may want to reward an agent as a function of others’
outputs, even if the outputs are independently distributed, when
teamwork is desirable.

As a result, compensation cannot be tied to individual per-
formance metrics. Neither can a fixed salary be given since it

would encourage employees to shirk. Therefore, programmer
compensation is generally based on the team’s total quality
outcome to motivate programmers to work harder. For example,
sharing of profits through stock option plan and bonus is a com-
mon practice in many software development firms [37]. This
scheme is taken as the basis for the closed source model. The
authors made the assumption that programmers who develop
the closed source software get a share of the profits because of
two reasons. First, sharing of profits through stock option plan
and bonus is a common practice in many software development
firms. Second, this assumption enables to tie software quality to
reward obtained by programmers.

The following sequence of actions is considered.

Stage 1) The firm announces its compensation plan and
hires MCS programmers.

Stage 2) Consistent with the open source model, each pro-
grammer chooses a planned quality qi and the com-
bination of individual quality outputs determines
the total software quality.

Stage 3) The firm sells the software at a price P and realizes
profits.

This description of the closed source firm follows [37] with
the following generalizations. In [37], a fixed number of risk
neutral and identical team members share the profit. In the
present case, a firm decides how many programmers to hire and
how much profit to share with risk averse and heterogeneous
programmers.

With a heterogeneous pool of employees, it may be possible
that the different employees are compensated differently using
the mechanism design. This outcome is called a separating
equilibrium, i.e., an equilibrium where the firm offers different
amounts to different programmer types. The following proposi-
tion shows that this is not feasible.
Proposition 2: Under the assumptions that individual pro-

grammer qualities are unobservable and the compensation is
based on profit sharing, a separating equilibrium does not exist
(proof given in the Appendix).

Therefore, the authors examine a pooling equilibrium where
all programmers obtain an equal share. The game is solved by
backward induction, solving the last stage first.

Stage 3 analysis: The demand for closed source software
SCS(QCS, P) is given by (2). The profit of the closed source
firm is

ΠCS(QCS) = Max
P

PSCS(QCS, P)

⇒ P =
−SCS(QCS, P)

∂SCS(QCS,P)
∂P

=
Qθ

CS

2
. (11)

The marginal cost of reproducing software is usually negligibly
small and, therefore, excluded from (11). However, if there is
a positive marginal cost of production, it can be scaled out
without affecting the intuition.

Stage 2 analysis: The firm shares a proportion (1 − ρ)
of the profit with employees and retains the rest. Let CCS(qi)
denote the cost of the programmer’s effort in the closed source

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

RAGHUNATHAN et al.: OPEN SOURCE VERSUS CLOSED SOURCE: SOFTWARE QUALITY IN COMPETITIVE MARKETS 911

environment. CCS(qi) is given by (4). The utility function for
programmer i is

Ui =
[
(1 − ρ)ΠCS(QCS)

MCS

]υ

− CCS(qi) (12)

where programmer i receives a fraction 1/MCS of the profit
available to all programmers. The employee’s optimal quality
choice is obtained by solving the first-order condition (steps
given in the Appendix).

Stage 1 analysis: In the first stage, the firm maximizes its
share of the profit less variable expenses such as recruitment,
coordination, overhead, and equipment costs

Max
ρ,MCS

[ρΠCS(QCS)]υ − C(MCS). (13)

The authors assume that C(MCS) = kMCS, where k is a
constant representing the cost for a one person change in MCS.
The expected quality QCS in the closed source model can now
be obtained.
Proposition 3: The ratio of the programmers’ quality levels

qH/qL = λL/λH . The price of the software is Qθ
CS/2, the

quality is

QCS =

D

2
θ α2θ1+ 1

θ υυ+1(1 − υ)1−υ
[

β
λH

+ 1−β
λL

]
8k1−υ

1
2−θ

demand is DCS = D/2, and social welfare is given by
3DQθ

CS/8 (proof given in the Appendix).
This result leads to the following interesting insights.

1) The number of programmers is endogenously determined
and does not enter the quality expression. However, the
quality of the closed source software improves with
higher demand (i.e., higher D), better coordination (i.e.,
higher α), more high-quality programmers (i.e., higher
β), and lower costs (i.e., lower λH , λL, or k).

2) The effect of the risk aversion is difficult to derive ana-
lytically. However, numerical simulations (see Table VI
for the parameters: D = 100, α = 1, θ = 0.5, β = 0.5,
λH = 2, λL = 1, k = 1) show that higher programmer
risk aversion (i.e., lower ν) reduces quality. (The au-
thors performed extensive numerical analysis for various
parameter values. The results in all these simulations
were qualitatively similar to that presented in Tables VI
and VII.)

3) The effect of the consumer valuation parameter θ is
also difficult to derive analytically. Numerical simulations
show that a higher value of θ reduces the quality but
increases firm’s profit and welfare (see Table VII for the
parameters: D = 100, α = 1, ν = 0.9, β = 0.5, λH = 2,
λL = 1, k = 1).

Comparing the overall quality under open and closed source
environments, the authors get Proposition 4.

TABLE VI
EFFECT OF ν ON QUALITY, PROFIT, AND WELFARE

TABLE VII
EFFECT OF θ ON QUALITY, PROFIT, AND WELFARE

Proposition 4: In noncompetitive markets, the open source
software quality is higher, equal to, or lower than the closed
source software quality if

NOSR(D)υ

>
=
<

c

(
D

2
θ α2θ1+ 1

θ υυ+1(1 − υ)1−υ

8k1−υ

) 2
2−θ [

β

λH
+

1 − β

λL

] θ
2−θ

.

Social welfare is higher, lower, or equal if

Qθ
OS

>

=
<

 0.75Qθ

CS

(proof given in the Appendix).
Propositions 3 and 4 provide several qualitative insights that

are likely to hold for other functional specifications.

1) There is no universal quality dominance of open source
over closed source and vice versa under all circum-
stances.

2) The open source model becomes more attractive in an en-
vironment where a large pool of programmers is willing
to work on open source software. The Internet revolution
has been a major impetus for open source by allowing
programmers worldwide to participate. Quality can be
further enhanced a) if more programmers can be urged
to participate; b) if the programmers’ efforts are publicly

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

912 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

recognized; and c) if programmers perceive code contri-
bution to be a fun task or a hobby.

3) It is difficult to make prior assertions about programmer
ability in open source versus closed source environments.
Thus, the authors took β to be the same under both
circumstances in the analysis. One could argue the possi-
bility that a closed source firm has a potential advantage
in that its hiring process may identify and exclude low-
ability programmers so that only high-ability program-
mers are employed despite a heterogeneous labor pool.
On the other hand, it can be argued that open source pro-
grammers are more skillful because they are self-selected.
Also, since the source code is subject to extensive peer
review, a level of personal accountability exists in open
source development that does not exist in the closed
source model. If the open source programmers are of
higher quality compared to closed source, the results of
the model here will tilt in favor of the open source quality.

4) Social welfare calculations reveal that for the same qual-
ity of software, open source generates greater social
welfare.

If an open source software provides greater quality than a
closed source software, an interesting issue to consider is
whether a closed source firm such as Microsoft can improve
software quality by internally adopting an open source strategy
of a tournament, where programmers work independently on
the same problem and compete for a single reward. This means
that the programmers do not divide their share of profit equally;
rather, only one from the M programmers will get the entire
profit shared by the firm. In Corollary 4.1, the authors provide
a sufficient condition for when it is suboptimal for the firm
to use a tournament approach if the benefit of programmer
coordination is sufficiently high, i.e., α is sufficiently high.
Corollary 4.1: Let M ∗ be the optimal number of program-

mers hired by the closed source firm under the tournament
approach. Compared to when all programmers receive equal
rewards, the firm’s profit is strictly lower when it uses the
tournament approach if α >

√
M ∗υ/θυ (proof given in the

Appendix).
Further, given that the number of programmers hired by a

closed source firm MCS is likely to be less than the number of
open source programmers NOS, a closed source firm that is not
already competitive cannot compete with open source firms by
internally adopting an open source strategy. The cost of hiring
enough programmers to make the tournament approach work
would be formidable.

It may however be possible for a proprietary firm to obtain
some benefits by collaborating with the Open Source commu-
nity by implementing a hybrid development system where the
community is encouraged to develop add-on features or product
extensions. For example, in the gaming software industry, it
is common for the major players such as Sony to tap into the
open source community to develop new features for a game
while the core of the software is architected and developed
in-house. A search of the Internet shows that a large number
of software firms such as Adobe, Microsoft, and Sun offer
software development kits (SDK) for free. An SDK consists
of an interface, development tools, and libraries that assist

programmers in creating application programs. However, the
SDKs can be downloaded only after agreeing to a license whose
terms may be unsuitable for free software development.

Licensing issues must be carefully considered so that the firm
does not accidentally release its proprietary software as an open
source. This is because code under the general public license
(GPL) cannot be mixed with nonfree software. Alternative open
source licenses where mixing is permitted include the Berkeley
system distribution (BSD) license, the Mozilla public license,
and the GNU Library GPL. Another approach is used by
Sun, which has an Open Source office suite called http://www.
openoffice.org and a commercial version called StarOffice.
Beneficial contributions to http://www.openoffice.org can be
separately implemented into StarOffice.

The firm must also remain vigilant about not making vol-
unteer contributors feel exploited, which it will if it profits at
the expense of their work [4]. This may cause them to lose
altruism and stop contributing. Firms therefore offer rewards
to contributors including putting them on the payroll.

An example of a hybrid model used by Microsoft is described
by [38] and is called shared source.

Microsoft is expanding its licensing model to include
our Shared Source philosophy. Shared Source is a bal-
anced approach that allows us to share source code with
customers and partners while maintaining the intellectual
property needed to support a strong software business. . .
Over the years Microsoft has made millions of lines of
source code freely available to developers through re-
sources such as SDKs, DDKs, and MSDN. . . The com-
mercial software model is just one model being utilized
in the software industry today. It is important to take
into account the Open Source Software movement as an
example of an alternative model. . . the common traits are
providing people with access to source code and allowing
others to modify and redistribute that code. As a result
of Microsoft’s statement of position today, many people
will attempt to say that Shared Source is Microsoft’s failed
attempt at being an Open Source Company. This could not
be a more incorrect statement. Shared Source is not Open
Source. The authors recognize that OSS has some benefits
such as the fostering of community, improved feedback,
and augmented debugging. The authors are always looking
for ways to improve our products and make our customers
more successful, and to that end the authors have incorpo-
rated these positive OSS elements in Shared Source.
So far, the authors have examined the improvement in quality

under open source and closed source when each environment
was modeled as a monopoly. The authors next examine quality
implications in a competitive market where open source and
closed source softwares compete for the same set of users.

VI. COMPETITION BETWEEN OPEN AND CLOSED SOURCE

Let QCS and QOS be the qualities of the closed source and
open source softwares, respectively, and P be the price of
the closed source software. It is obvious that if QCS ≤ QOS,
then all D consumers will adopt the open source software.
Competition arises only when QCS > QOS. (In the model here,

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

RAGHUNATHAN et al.: OPEN SOURCE VERSUS CLOSED SOURCE: SOFTWARE QUALITY IN COMPETITIVE MARKETS 913

the demand for a software is a function of only its own and
competitor’s quality and price. Other factors such as industry
standards and support may also influence a buyer’s decision to
adopt the open or closed source software. Such issues can be
analyzed using location models such as linear or circular city
model. The authors separately analyzed the competition using
location models and found that the qualitative results of this
section remain the same.) In this case, it can be observed easily
that only consumers with higher valuations, i.e., higher t, will
buy the closed source software and the rest will adopt the open
source software. The indifferent consumer is the one whose
surplus is the same for both software. That is, the indifferent
consumer’s t value is given by

tQθ
CS − P = tQθ

OS ⇒ t =
P(

Qθ
CS − Qθ

OS

) . (14)

Thus, demands for the closed and open source softwares are
given by D(1 − P/(Qθ

CS − Qθ
OS)) and D P/(Qθ

CS − Qθ
OS),

respectively.
The authors assume the same sequence of actions described

in the previous section on closed source under monopoly with
the provision that under competition, in stage 2, open source
and closed source qualities are simultaneously determined. As
before, the closed source firm sets its price in stage 3.

For the closed source model, the authors obtain the quality as
follow. The optimal price and profit are

P =

(
Qθ

CS − Qθ
OS

)
2

(15)

ΠCS =
D
(
Qθ

CS − Qθ
OS

)
4

. (16)

Using an analysis similar to that of the previous sections, it
can be shown that

Q2−θ
CS

(
Qθ

CS − Qθ
OS

)1−υ

= MCSθυα2

[
(1 − ρ)D

4

]υ [
β

λH
+

1 − β

λL

]
(17)

QOS =

√
NOSR

(
D
2

)υ
c

[
β

λH
+

1 − β

λL

]
(18)

and welfare is

3D(QOS + QCS)
8

. (19)

Hence, the following result holds.
Proposition 5: Under competition, 1) open source quality is

independent of closed source quality; 2) open source quality
is lower than under monopoly; 3) closed source profit, quality,
and price are equal or lower than under monopoly, and are
decreasing as open source quality increases; and 4) welfare
increases (proof given in the Appendix).

Many of the results in Proposition 5 have important implica-
tions for the software market.

1) Open source quality is lower under competition than un-
der monopoly. The reason for the lower quality in com-

petition is that the closed source software takes away
some of the market for the open source software, reducing
the potential reward of open source programmers. Thus,
open source programmers are likely to put in less effort.

2) Open source quality is independent of the closed source
quality. The reason for this counter-intuitive finding is
that the closed source firm, which can use price to ma-
nipulate demand, finds it optimal to charge a price such
that it gets the demand from all and only consumers on
the upper half of the valuation spectrum (i.e., consumers
with t > 1/2). Because these consumers value quality
more than consumers on the lower half of the valuation
spectrum, they are more willing to pay a price for the
higher quality closed source software. The open source
firm caters to the consumers in the bottom half of the
valuation spectrum. Because the open source firm does
not manipulate demand through price (i.e., it charges a
zero price for its product), the open source firm gets its
demand from all and only consumers on the lower half
of the valuation spectrum. This demand structure occurs
irrespective of the closed source quality.

3) Closed source quality also decreases under competition
from open source software. Conventional wisdom sug-
gests that competition will increase quality and decrease
price, as in the case of automobiles (Banker et al. 1998)
and other industries. The authors find that for the software
industry, while competition decreases price, it does not
increase quality. The reason for this result is that the
higher price charged due to higher quality is offset by the
lower price (zero in the case of open source software) of
the competing product. Faced with a decline in revenue,
the closed source firm reduces its investment in quality.

VII. CONCLUSION

This paper examined software quality improvement under
two distinct methods of software development: the traditional
closed source approach (e.g., MS Windows) and the emerging
open source approach (e.g., Linux). Software quality is concep-
tualized as improvements to the software package not only in
terms of identifying and correcting errors but also enhancing
the functionality, scalability, maintainability, portability, and, in
general, enhancing the usability of the software. For both open
and closed source softwares, quality was defined in this study
in terms of acceptable enhancements to the code proposed by
the programmer community.

Using game theoretic analysis and modeling open source
and closed source software developments under monopoly and
competitive settings, the authors derived several useful and in-
teresting findings. They found that open source software quality
is not necessarily lower than closed source quality despite the
absence of a proprietary interest. Programmers are motivated to
improve open source quality for an opportunity for recognition
and future potential benefits.

This study demonstrated that there is no universal dominance
of open source or closed source approaches in terms of software
quality. Quality improvement under either scenario depends
on exogenous variables such as market structure (monopoly

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

914 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

versus competition), incentive structure (tournament versus
profit sharing), the number and quality of programmers, co-
ordination between programmers, and endogenous variables
such as reward, programmers’ efforts, and number of users. It
is virtually impossible to stake a claim that one approach is
better than the other for all software and under all circumstances
without simultaneous consideration of all of the above factors.
In other words, there is no “one size fits all” approach to soft-
ware development, and hence the authors believe that industry
claims touting one approach over the other are fundamentally
misguided. The adoption of Linux by large enterprises, e.g.,
Diamler–Chrysler, attests that they found it to be lower TCO for
the same quality level. Yet other car manufacturers remain with
Unix, a proprietary software. This is consistent with the predic-
tion that there is no clear-cut dominance of Open Source over
proprietary software or vice versa. Other than Linux, some data
are available on the adoption of Apache, a web server soft-
ware that competes with Microsoft. A recent survey at http://
news.netcraft.com/archives/web_server_survey.html shows that
about 70% of servers run on Apache and 20% on Microsoft.

However, it is still possible to compare marginal improve-
ments in quality between open and closed source developments
due to each of the above factors, when all else are equal.
First, quality is likely to improve in both open source and
closed source with increasing market demand for the software.
Both closed source firms and open source communities will
have stronger incentive to improve softwares that are desired
more by users, but for different reasons. Closed source firms
see increased market demand as an opportunity for generating
more revenues through sales and licenses, while open source
programmers have a higher opportunity to gain recognition
among their community or signal their talent to potential em-
ployers (open source or otherwise). Second, the quality of open
and closed source softwares also depends on the nature of
the market (monopolistic versus competitive) and competitors
in the market. The quality of both open source and closed
source softwares decreases in competitive markets. This result
suggests that competition from the open source movement may
hamper the innovation in the closed source software industry
and vice versa.

Finally, some critics believe that open source software qual-
ity suffers because programmers view code contributions as
a hobby rather than as a serious pursuit or being paid for
the same. Since many open source programmers come from
a hacker culture, they perceive identifying bugs and fixes as a
fun or enjoyable activity, and hence such hobby considerations
are reasonable. The authors found that open source software
quality decreases with programmers’ cost of effort, and hobby
considerations increases quality by reducing programmers’ cost
of effort. The enjoyment associated with open source code
improvement motivates programmers to create and share im-
provements, even in the absence of pay.

Like most other analytical models, the current model suffers
from a few limitations. First, it focused essentially on deter-
mining the equilibrium quality of open source software and
not on the process of development over time. In other words, a
dynamic model capturing features such as incremental quality
improvements via peer feedback and collaboration on future

entries to the tournament was not modeled. Restricting such
indirect collaboration between programmers may have led to
underestimation of the quality of open source software in the
analysis. Second, the authors made certain simplifying assump-
tions such as quadratic cost functions. Since formal modeling
relies on abstraction to address some issues in a stylized setting,
limitations are inherent to the modeling process, but analysis of
an abstract model can help understand, explain, or predict real
issues in life. Future research may try to address some of the
more restrictive assumptions.

Future research can extend the current analysis to a multi-
period game. Issues relevant in a multiperiod game such as
determining per-period quality improvements, prices and up-
grade prices, and the effect of customers’ leap-frogging quality
advances may be modeled. It was assumed in this paper that
there is only one winner who receives the reward in the open
source tournament. It is possible that there will be multiple win-
ners with different levels of rewards in this tournament. More
complex interdependence of programmers’ efforts in determin-
ing the total software quality, as opposed to the summation of
qualities used here, could also be examined. Other issues such
as standards, licensing policies, and legal issues remain to be
investigated in the open source context. The model approach is
necessarily an approximation of actual approaches from the in-
dustry. It would also be fruitful to continue to study approaches
taken by industry on quality development in open source. This
might include case comparisons, cross-sectional analysis, and
longitudinal evolution of quality under the two methods.

APPENDIX

Proof of Proposition 1

Consider the N th programmer and apply a statistical theorem
[40, p. 183] as an intermediate step.
Theorem 1: If {Q1, Q2, . . . , QN−1} are independent ran-

dom variables with cdfs {FQ1 , FQ2 , . . . , FQ,N−1}, respec-
tively, and YN−1 ≡ max{Q1, Q2, . . . , QN−1}, then the cdf of
YN−1 is FYN−1 =

∏N−1
j=1 FQj .

Proof of Theorem 1: Prob(YN−1 < Q) = Prob(Q1 <
Q) ∩ Prob(Q2 < Q)∩· · · ∩ Prob(QN−1 < Q) =

∏N−1
j=1 FQj .

Note that p(qi, q−i) = prob(Qi − YN−1 ≥ 0). In other
words p(·) is the cdf of the random variable (YN−1 − Qi) and
can be determined using the convolution theorem [40, p. 186]

p(YN−1 − Qi ≤ 0) =

∞∫
−∞

fQi
(x)

N−1∏
j=1

FQj
(x)dx.

If YN ≡
∏N

j=1 FQj is the distribution of the maximum
quality, its expectation is obtained by the formula E(YN) =∫∞
0 (1 − FYN

) −
∫ 0

−∞ FYN
[40, p. 65]. �

Proof of Corollary 1.1

Starting with (1) and the tournament winner assumption

Ui =
qi

NOS∑
j=1

qj

R(DOS)υ − COS(qi). (A1)

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

RAGHUNATHAN et al.: OPEN SOURCE VERSUS CLOSED SOURCE: SOFTWARE QUALITY IN COMPETITIVE MARKETS 915

Solving for the quality chosen, the first-order condition is

R(DOS)υ

[
NOS∑
j=1

qj − qi

]
[

N∑
j=1

qj

]2 − cλiqi = 0

⇒ R(DOS)υ [(NH − 1)qH + NLqL]
[NHqH + NLqL]2

− cλHqH = 0

and
R(DOS)υ [NHqH + (NL − 1)qL]

[NHqH + NLqL]2
− cλLqL = 0.

Further, this implies

R(DOS)υ

(NHqH + NLqL)cλH
≈ qH

and
R(DOS)υ

(NHqH + NLqL)cλL
≈ qL (A2)

where the symbol ≈ denotes “approximated by.” The approx-
imation is reasonable if the input of a single programmer is
small compared to the total quality. The second-order condition
is always met. Dividing the two equations, the authors get
λL/λH = qH/qL. Multiplying the first equation by NH and the
second by NL and adding, the authors get the expected quality
of the software

QOS =

√
R(DOS)υ

(
NH

cλH
+

NL

cλL

)

=

√
NOSR(D)υ

c

(
β

λH
+

1 − β

λL

)
. (A3)

Since there is no firm profit, social welfare is the surplus of
the consumers. This is given by

D

1∫
0

tQθ
OSdt =

DQθ
OS

2
. (A4)

�

Proof of Proposition 2

Proof by contradiction: suppose a separating contract
(x1, QCS) and (x2, QCS) is announced where x1 > x2 are the
proportions of profit shared. These must satisfy the incentive
compatibility constraints

IC1 : Π1(x1, QCS|x1) > Π1(x2, QCS|x1)

IC2 : Π2(x2, QCS|x2) > Π2(x1, QCS|x2).

Clearly, IC2 is violated since each employee prefers the
higher share. Intuitively, what this means is that since the firm
can only observe the combined output of the employees, it
cannot discriminate between the employees since each one
would pretend to be a low-cost programmer without any cost
incurred for lying. �

Proof of Proposition 3

The authors solve the game by backward induction, solving
the last stage first. Stage 3 analysis gives

ΠCS(QCS) = Max
P

D

(
1 − P

Qθ
CS

)
P. (A5)

The optimal price is Qθ
CS/2. Inserting this into the profit

expression gains

ΠCS(QCS) =
DQθ

CS

4
. (A6)

Substituting this into the Stage 2 analysis gives the utility of
the programmer [

(1 − ρ)DQθ
CS

4MCS

]υ

− λi
q2
i

2
. (A7)

The first-order condition can be rewritten for the two pro-
grammer types separately as

αθυ

λL

[
(1 − ρ)D

4MCS

]υ

(QCS)θυ−1 = qL (A8)

αθυ

λH

[
(1 − ρ)D

4MCS

]υ

(QCS)θυ−1 = qH . (A9)

An immediate conclusion from these equations is that the
efforts of the two types are inversely proportional to their cost
parameter. Thus

qH

qL
=

λL

λH
. (A10)

This implies that the low-cost programmers choose a higher
quality level than the high-cost programmers. The authors
now solve for software quality. Multiplying the first equation
by αMH and the second by αML and adding, the authors
solve as

MCSθυα2

[
(1 − ρ)D

4MCS

]υ [
β

λH
+

1 − β

λL

]
= (QCS)2−θυ

⇒ QCS =
(

M1−υ
CS θυα2

[
(1 − ρ)D

4

]υ [
β

λH
+

1 − β

λL

]) 1
2−θυ

.

(A11)

Now, in Stage 1, the firm maximizes its share of the profit

Max
ρ,MCS

ρD
(
M1−υ

CS θυα2
[

(1−ρ)D
4

]υ [
β

λH
+ 1−β

λL

]) θ
2−θυ

4
−kM2

CS

⇒ ρ = 1 − θυ

2
and

MCS =

D2α2θθ3υθ(υ+1)(1 − υ)2−θυ

[
β

λH
+ 1−β

λL

]θ
64k2−θυ

1
2−θ

.

(A12)

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

916 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

Substituting these back into the quality expression obtains

QCS =

D

2
θ α2θ1+ 1

θ υυ+1(1 − υ)1−υ
[

β
λH

+ 1−β
λL

]
8k1−υ

1
2−θ

.

(A13)

Social welfare is the sum of the firm’s profits and consumer
surplus. Since half the market is served by the firm, profit is
given by DP/2 = DQθ

CS/4. Surplus is

D

1∫
1
2

(
tQθ

OS − P
)
dt =

DQθ
OS

8
. (A14)

Hence, welfare is equal to (DQθ
CS/4) + (DQθ

CS/8) =
3DQθ

CS/8. �

Proof of Proposition 4

The proof follows from the expressions of QOS and QCS. �

Proof of Corollary 4.1

If the closed source firm uses the tournament approach, then
the reward function for the programmers is given by (1 − ρ)
DQθ

CS/4. In the tournament approach, α = 1 as in the open
source. From (1) and tournament winner assumption, utility is

Ui =
qi

NOS∑
j=1

qj

(
(1 − ρ)DQθ

CS

4

)υ

− COS(qi). (A15)

Solving for planned quality, the first-order condition is

(
(1 − ρ)D

4

)υ (
Qθυ−1 + (θυ − 1)Qθυ−2qi

)
= λiqi. (A16)

Assuming that the quality of a single programmer is small
compared to the total quality, the authors get the first-order
condition (

(1 − ρ)D
4

)υ
Qθυ−1

λi
= qi. (A17)

Multiplying the equation for high-cost programmers by MH

and for the low cost by ML and adding, the authors get

MCS

[
(1 − ρ)D

4

]υ [
β

λH
+

1 − β

λL

]
= (QCS)2−θυ. (A18)

Now, in Stage 1, the firm maximizes its share of the profit

Max
ρ,MCS

ρD
(
MCS

[
(1−ρ)D

4

]υ [
β

λH
+ 1−β

λL

]) θ
2−θυ

4
− kMCS.

(A19)

Let M ∗ be the optimal value of MCS. If the closed source
firm does not use the tournament approach, its optimization
model is given by

Max
ρ,MCS

ρD
(
M1−υ

CS θυα2
[

(1−ρ)D
4

]υ [
β

λH
+ 1−β

λL

]) θ
2−θυ

4
−kMCS.

(A20)

Comparing (A19) and (A20), the authors can note that for
the closed source firm to be worse off using the tournament
approach, θυα2 > M ∗υ

is a sufficient condition. �

Proof of Proposition 5

1) The result is obvious from the QOS expression.
2) By comparing the expressions for QOS under monopoly

and competition, and noting that R is an increasing
function, the authors show this result.

3) The authors prove this result by contradiction. They know
that when QOS = 0, QCS is same under competition and
monopoly. Let us assume a positive QOS. Let the optimal
M , ρ, and QCS for the competition case be MC , ρC , and
QC

CS, respectively. Let the optimal M , ρ, and QCS for the
monopoly case be MM , ρM , and QM

CS, respectively.

Note that ∂QCS/∂QOS ≤ 0 under competition. Thus, the
closed source can obtain strictly higher profit with M and ρ
values equal to MC and ρC , respectively, in the monopoly
case because for these values of M and ρ, costs will be
identical in the monopoly and competition cases but QCS, and
consequently price and demand, will be higher in the monopoly
case. Hence, the optimal profit in the monopoly case cannot be
lower than that in the competition case.

Assume that QC
CS > QM

CS. If the values of M and ρ in the
monopoly case are set to MC and ρC, respectively, then QCS

will be higher than QM
CS. Consequently, under monopoly, for

these values of MC and ρC , the profit will be higher than the
optimal profit, which contradicts the optimality of MM and ρM .

The result that price is lower under competition follows from
the expression for price and the results that QCS is lower under
competition.

Welfare is given by the following expression, where the three
terms, respectively, are the surplus of open source software
users, the profit for the firm, and the surplus of closed source
software users:

D

1
2∫

0

tQθ
OSdt +

DQθ
CS

4
+ D

1∫
1
2

(tQθ
CS − P)dt

=
DQθ

OS

8
+

DQθ
CS

4
+

DQθ
OS

4
+

DQθ
CS

8

=
3D(Qθ

OS + Qθ
CS)

8
. (A21)

�

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

RAGHUNATHAN et al.: OPEN SOURCE VERSUS CLOSED SOURCE: SOFTWARE QUALITY IN COMPETITIVE MARKETS 917

ACKNOWLEDGMENT

The authors thank A. Bhattacharjee, D. Harter, E. Haruvy,
and seminar participants at the University of Texas at Dallas
and the 23rd International Conference on Information Systems
(ICIS) in Barcelona 2002.

REFERENCES

[1] T. O’Reilly, “Lessons from open-source software development,” Com-
mun. ACM, vol. 42, no. 4, pp. 32–37, 1999.

[2] G. Von Krogh, “Open source software development,” Sloan Manage. Rev.,
vol. 44, no. 3, pp. 14–18, 2003.

[3] E. S. Raymond. (1999). The Cathedral and the Bazaar. [Online].
Available: http://www.tuxedo.org/~esr/writings/magic-cauldron/magic-
cauldron.txt

[4] E. Haruvy, A. Prasad, and S. P. Sethi, “Harvesting altruism in open source
software development,” J. Optim. Theory Appl., vol. 118, no. 2, pp. 381–
416, 2003.

[5] G. P. Dwyer, Jr., “The economics of open source and free software,”
Federal Reserve Bank of Atlanta, 1999, unpublished paper.

[6] I.-L. Hann, J. Roberts, S. Slaughter, and R. Fielding, “Economic incen-
tives for participating in open source software projects,” in Proc. 23rd Int.
Conf. Information Systems, Barcelona, Spain, 2002, pp. 365–372.

[7] J. Lerner and J. Tirole, “Some simple economics of open source,” J. Ind.
Econ., vol. 52, no. 2, pp. 197–234, 2002.

[8] Y. Benkler, “Coase’s penguin, or Linux and the nature of the firm,” Yale
Law J., vol. 112, no. 3, pp. 369–389, 2002.

[9] E. Von Hippel and G. Von Krogh, “Open source software and the ‘private-
collective’ innovation model: Issues for organizational science,” Organ.
Sci., vol. 14, no. 2, pp. 209–313, 2003.

[10] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation
of software quality,” in Proc. 2nd Int. Conf. Software Engineering, San
Francisco, CA, 1976, pp. 592–605.

[11] I. Gorton and A. Liu, “Software component quality assessment in practice:
Successes and practical impediments,” in Proc. 24th Int. Conf. Software
Engineering, Orlando, FL, 2002, pp. 555–558.

[12] D. E. Harter, M. S. Krishnan, and S. A. Slaughter, “Effects of process ma-
turity on quality, cycle time, and effort in software product development,”
Manage. Sci., vol. 46, no. 4, pp. 451–466, 2000.

[13] C. C. Mann. (2002). “Why software is so bad. . . and what’s being
done to fix it.” Tech. Rev. [Online]. Available: www.technologyreview.
com/articles/mann0702.asp

[14] C. K. Prahalad and M. S. Krishnan, “The new meaning of quality in the
information age,” Harvard Bus. Rev., vol. 77, no. 5, pp. 109–118, 1999.

[15] S. Slaughter, D. Harter, and M. Krishnan, “Evaluating the cost of software
quality,” Commun. ACM, vol. 41, no. 8, pp. 67–73, 1998.

[16] Bloor Research. (1999, Oct. 22). Linux Versus NT: The Verdict. [Online].
Available: http://www.itsecurity.com/news4/p222.htm

[17] C. Laird. (1998, Aug.). Linux Versus NT: Are You Getting the
Most From Your OS? [Online]. Available: http://www.sunworld.com/
sunworldonline/swol-08-1998/swol-08-linuxvnt.html

[18] IDC. (2002). Windows 2000 Versus Linux in Enterprise Computing.
[Online]. Available: http://www.microsoft.com/windows2000/docs/
TCO.pdf

[19] Robert Frances Group. (2002). Total Cost of Ownership for Linux
in the Enterprise. [Online]. Available:http://www.ibm.com/linux/RFG-
LinuxTCO-vFINAL-Jul2002.pdf

[20] J. R. Green and N. L. Stokey, “A comparison of tournaments and con-
tracts,” J. Polit. Econ., vol. 91, no. 3, pp. 349–365, Jun. 1983.

[21] S. Rosen, “Prizes and incentives in elimination tournaments,” Amer. Econ.
Rev., vol. 76, no. 4, pp. 701–715, 1986.

[22] L. Li and Y. S. Lee, “Pricing and delivery-time performance in a compet-
itive environment,” Manage. Sci., vol. 40, no. 5, pp. 633–646, 1994.

[23] P. J. Lederer and L. Li, “Pricing, production, scheduling, and delivery-
time competition,” Oper. Res., vol. 45, no. 3, pp. 407–420, 1997.

[24] K. C. So, “Price and time competition for service delivery,” Manuf. Serv.
Oper. Manag., vol. 2, no. 4, pp. 392–409, 2000.

[25] A. Tsay and N. Agrawal, “Channel dynamics under price and service
competition,” Manuf. Serv. Oper. Manag., vol. 2, no. 4, pp. 372–391,
2000.

[26] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open source
software development: The Apache server,” in Proc. 22nd Int. Conf.
Software Eng., Limerick, Ireland, 2000, pp. 263–272.

[27] K. Crowston and B. Scozzi, “Open source software projects as virtual or-

ganizations: Competency rallying for software development,” Proc. Inst.
Elect. Eng., Softw., vol. 149, no. 1, pp. 3–17, 2002.

[28] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic Theory.
New York: Oxford Univ. Press, 1995.

[29] A. K. Basu, R. Lal, V. Srinivasan, and R. Staelin, “Salesforce compen-
sation plans: An agency theoretic perspective,” Mark. Sci., vol. 4, no. 4,
pp. 267–291, 1985.

[30] D. McFadden, “Conditional logit analysis of qualitative choice behavior,”
in Frontiers in Econometrics, P. Zarembka, Ed. New York: Academic,
1974, pp. 105–142.

[31] G. Loury, “Market structure and innovation,” Q. J. Econ., vol. 93, no. 3,
pp. 395–410, 1979.

[32] R. D. Luce, Individual Choice Behavior. New York: Wiley, 1959.
[33] L. G. Cooper and M. Nakanishi, Market Structure Analysis. Norwell,

MA: Kluwer, 1998.
[34] S. J. Grossman and O. D. Hart, “An analysis of the principal-agent prob-

lem,” Econometrica, vol. 51, no. 1, pp. 7–46, 1983.
[35] B. Holmstrom, “Moral hazard in teams,” Bell J. Econ., vol. 13, no. 2,

pp. 324–340, 1982.
[36] H. Itoh, “Incentives to help in multi-agent situations,” Econometrica,

vol. 59, no. 3, pp. 611–636, 1991.
[37] B. E. Hermalin, “Towards an economic theory of leadership: Leading by

example,” Amer. Econ. Rev., vol. 88, no. 5, pp. 1188–1205, 1998.
[38] C. Mundie. (2001, May 3). The Commercial Software Model.

[Online]. Available: http://www.microsoft.com/presspass/exec/craig/05-
03sharedsource.asp

[39] R. D. Banker, I. Khosla, and K. K. Sinha, “Quality and competition,”
Manage. Sci, vol. 44, no. 9, pp. 1179–1192, 1998.

[40] A. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory of
Statistics, 3rd ed. Singapore: McGraw-Hill, 1974.

Srinivasan Raghunathan received the M.S. degree
in business administration from the Indian Institute
of Management (IIM) Calcutta, West Bengal, India,
and the Ph.D. degree from the University of Pitts-
burgh, Pittsburgh, PA.

He is an Associate Professor in the School of
Management, University of Texas at Dallas, Richard-
son, TX. His research interests include economics
of information systems, IT security, and information
sharing in supply chains. His research is published
in several journals including Management Science,

Information Systems Research, and various IEEE TRANSACTIONS.

Ashutosh Prasad received the M.S. degree in eco-
nomics and the Ph.D. degree in marketing from
the University of Texas at Austin, Austin, TX, and
the M.S. degree in business administration from the
Indian Institute of Management (IIM) Calcutta, West
Bengal, India.

He is an Assistant Professor in the School of Man-
agement, University of Texas at Dallas, Richardson,
TX. His research is published or forthcoming in sev-
eral journals including the International Journal of
Research in Marketing, Journal of Business, Journal

of Optimization Theory and Applications, Marketing Letters, and Marketing
Science. His research interests include new product introduction, network
effects, software marketing and piracy, advertising, and sales force issues.

Dr. Prasad received the School of Management’s Outstanding Undergraduate
Teacher Award in 2001.

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

918 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

Birendra K. Mishra received the M.S. degree in
petroleum engineering and the Ph.D. degree in ac-
counting from the University of Texas at Austin,
Austin, TX.

He is a Visiting Assistant Professor at the Ander-
son Graduate School of Management, University of
California, Riverside, CA, and an Assistant Professor
at the School of Management, University of Texas at
Dallas, Richardson, TX. He uses agency theory and
game theory to model and analyze business prob-
lems. His research has appeared or is forthcoming

in Marketing Science, Management Science, Journal of Accounting Research,
Journal of Accounting and Public Policy, Journal of Management Accounting
Research, and Journal of Business Research among others.

Dr. Mishra was awarded the Dean’s Excellence in Research Grant at the
Arizona State University.

Hsihui Chang received the Ph.D. degree in account-
ing from the University of Minnesota, Minneapolis,
MN.

He is an Associate Professor of Accounting and
the Associate Dean at the Gary Anderson Graduate
School of Management, University of California,
Riverside, CA. His current research interests include
performance measurement, information systems, and
data envelopment analysis. He has published more
than 25 articles in various leading research journals
including the European Journal of Operational Re-

search, Journal of Accounting and Economics, Journal of Accounting and
Public Policy, Strategic Management Journal, and The Accounting Review.

Dr. Chang has received many awards for his research articles and one award
for his outstanding teaching. He has supervised an award-winning doctoral
dissertation. He is an active member of various professional organizations and
has served as a consultant to several profit and nonprofit organizations.

Authorized licensed use limited to: Akademia Gorniczo-Hutnicza. Downloaded on April 17, 2009 at 04:25 from IEEE Xplore. Restrictions apply.

