
Transformation of SBVR Business Design to UML Models

Amit Raj
Unisys Global Services India

135/1, Residency Road
Bangalore - 560 025

Amit.Raj@in.unisys.com

T. V. Prabhakar
Deptt. of Computer Science

IIT - Kanpur
Kanpur - 208016

tvp@cse.iitk.ac.in

Stan Hendryx
∗

Hendryx & Associates
Sunnyvale, California

USA
stan@hendryxassoc.com

ABSTRACT
This paper presents a methodology for transforming busi-
ness designs written in OMG’s standard Semantics of Busi-
ness Vocabulary and Rules (SBVR) framework, into a set
of UML models. It involves the transformation of business
vocabulary and rules written in SBVR’s ”Structured En-
glish” into a set of UML diagrams, which includes Activ-
ity Diagram(AD), Sequence Diagram(SD), and Class Dia-
gram(CD). This transformation works by detecting the dis-
tinction between rules which will participate in the construc-
tion of Activity Diagram and rules which do not. These
rules are imperative in nature. The work in the paper also
includes the detection of activities embedded implicitly in
those rules and establishment of sequence between those ac-
tivities. These activities incur some action. We also detect
their owner and refer to them as the doer of the action. This
plays a very important role in the development of Class Di-
agrams.

Categories and Subject Descriptors
D.2.2 [Object-oriented design methods]: Flow charts;
D.2.1 [Methodologies]: [Business Requirements and their
models, Flow Charts - UML Activity Diagram.]

General Terms
Design, Algorithms, Languages.

Keywords
Model Driven Architecture, SBVR, Business Design, Pro-
duction Rule Representation, Business Rules, UML.

1. INTRODUCTION
Development of a system involves a set of stages like the

development of a business model, a Platform Independent

∗The author is a part of SBVR and MDA specifications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC’08, February 19-22, 2008, Hyderabad, India.
Copyright 2008 ACM 978-1-59593-917-3/08/0002 ...$5.00.

Model (PIM) and Platform Specific Model (PSM) etc. The
development of a business model is the stage where a Busi-
ness Analyst (BA) designs and puts the constraints on the
system. The OMG’s SBVR is an approach which allows to
create the business design in terms of business vocabulary
and rules in natural language format. SBVR was originally
developed to share the business semantics between differ-
ent communities. Transferring the business semantics from
business people to IT people introduce some inconsistencies.
The contribution of this paper is to bridge the gap between
business people and IT people in order to minimize the loss
of semantics. The paper shows how to create the business
design on SBVR and also shows how to transform them to
PIMs.

Computation Independent Model (CIM)

SBVR based
Business Model

Other
Business Model

Platform Independent Model (PIM)

UML Model BPMN Model

Platform Specific Model (PSM)

J2EE
Application

Dot Net
Application

Real World
Application

Figure 1: OMG MDA’s Modeling Layers

Main challenge in transforming the Business Model to
PIM as shown in Figure 1, is the detection of automatable
business rules and their automation. ”Automating” a rule
means to enforce the rule through automation. In general,
an enforcement policy needs to be specified for each rule and
putting an obligation on the system or process as to exactly
how, when, and where the system or process will enforce the
rule. That is, there should be a rule or a set of rules for each
automatable rule about how each of them will be enforced
by the system and in this paper we are trying to develop that
set of rules. This is often non-trivial, as there are often sev-
eral options available, and it is a system design choice which
one to use. Additionally, the enforcement may be complex,

29

involving many steps and coordinated activity to enforce the
rule. This information is generally not in the automatable
rule itself, but involves other considerations too. The contri-
bution of this paper is to analyse all those requirements and
presenting a methodology which allows business people to
convert their business designs into UML Activity Diagram,
Sequence Diagram and Class Diagram. Eriksson et., al., in
his book [13] has shown the business modeling with UML.
The paper is organized as follows: the next section present
the definition of SBVR and shows the structure to present
the meaning of a rule. The paper then presents a method-
ology to automatically transform the business vocabulary
and rules written in SBVR into UML AD, SD and CD. The
examples used to demonstrate the methodology has been
taken from [21] which shows the interaction between an atm
and a user. Then it presents a discussion which includes the
utility and limitations of the approach followed by related
and future work and finally it end up with a conclusion.

2. SBVR
SBVR is an abbreviated form of ”Semantics of Business

Vocabulary and Rules” which has been accepted by OMG
in 2005. OMG’s Model Driven Architecture (MDA) [5] is
a multi layered approach to implement a real world appli-
cation. SBVR is completely compatible with MDA and be-
haves as a Computational Independent Model. Compati-
bility with MDA increases its adoption by several business
organizations.
SBVR is an approach to allow the business analysts or any
business person, who is interested in writing the business
rules, to express the business artifacts in natural language
format. A business person can write them in his own lan-
guage and can create a semantic model for it. This seman-
tics model could be same for different business designs in
different languages because semantic metamodel of SBVR
is totally independent of representation [10].
The basic mantra of SBVR is ”Rules are built of fact types
and fact types are built of terms” which is clearly described
in Figure 2 with example.

Figure 2: SBVR Schema Model

SBVR has its own set of keywords and terminology to
write the business vocabulary and rules. Following is a little
introduction with its terminology given in [10].

2.1 SBVR Business Vocabulary
SBVR Business Vocabulary is the collection of business

entities, their instances and relationships between them, which
can be used by any organization in their writing and talking
during the course of their business.

• Terms: These are the noun or group of words which
can be collectively used for the designation of a busi-
ness entity. For example:

”bank” or ”investment bank”

• Name: These are the words which are used to repre-
sent the instance of a particular term.

”SBI”

which is an instance of bank.

• Fact Type: These are the sentences which represent
the relationship between terms. We are using the tem-
plate term-verb-term to establish the relation between
two terms, as it is very obvious that a mutual relation-
ship between 3 entities can be easily break down to
maximum of 3 binary relations. For example, the fact
type ”customer owns account is member” states that
a customer is related with account and account is re-
lated with member and a person who owns an account
will be a member. This relationship can be breakdown
to two relations as described by the two fact type like
”customer owns account” and ”customer is member”.

2.2 SBVR Business Rules and Their Parsing
These are the sentences under business jurisdiction which

guide the structure and behavior of an organization. The
rules guiding the structure are known as Structural Rules
and the rules guiding behavior are known as Operative
Rules.
SBVR allows 4 types of expressions as given in [10], to create
the business vocabulary and rules. To parse the business
model given in SBVR, we have to just identify the 4 types of
expressions i.e. term, Name, Verbs, Keywords explained
in [10].

2.3 Logical Formulation
Every rule presents some semantics of a business artifact.

SBVR provides a structure to formulate that semantic which
is known as logical formulation. It is an abstract and lan-
guage independent syntax to represent the meaning of a rule
as described in Figure 3. Some of the terminology used in
Figure 3 is not described in the paper but properly explained
in [10].

Figure 3: Logical Formulation of a SBVR Rule

SBVR Specification [10] also provides a Meta Object Fa-
cility(MOF) [4] representation of Logical Formulations.

30

3. SBVR TO UML ACTIVITY DIAGRAM
Not all the rules will participate in the construction of

AD, as it shows the execution behavior not the structure.
Ignoring the structural rules, we will consider only operative
rules. A subset of those operative rules will help in gener-
ating the AD and we will name them as the automatable
rules. Logical formulation of automatable rules will be used
to create the activity diagram. Automatable rules are gener-
ally in the form of if-then or Event-Condition-Action(ECA)
format [11]. Logical formulation of these rules is defined as
implications, which will help us to find out the activities and
their precondition and sequence between those activities. A
detailed discussion of this methodology is given in following
sections.

3.1 Categorization of Rules
The business rules can be categorized as structural rules

and operative rules. As described in the above section, struc-
tural rules will only participate in the structure of the busi-
ness organization but would not guide the business flow.
Operative rules are the rules which will guide the business
flow, so a distinction between the operative and structural
rules is required, which has been done in the SBVR Specifi-
cation [10].

As our intension is to draw the execution behavior of a
system on a UML Activity diagram, we must consider only
operative rules ignoring the structural rules. But not all the
operative rules will participate in activity diagram, so we
again categorize them according to their Information Tech-
nology(IT) support as given in [18].

• IT support = automated: These are the rules which
should be completely handled by IT system without
any intervention of human user. We will refer these
rules as automatable rules for rest of the discussion.

• IT support = supported: These are the rules
which are supported by IT system and expect some
human interventions.

The rules which are completely supported by IT will be
named as automatable rules for rest of the paper, and these
rules will be used to create the AD. Business rule writer
is the only person who knows which rules are automatable
and not. We will allow him to express this knowledge with
rules at the time of writing the rules. For example, a typical
SBVR business rule signature is given in Figure 4 in which it
is shown that a rule includes some attributes whose detailed
discussion is given in [10]

It is obligatory that each exactly one if the i

Guidance Type :

Description : Each atm will request the password of card if the user has inserted

the card in atm.

Enforcement level:

Supporting fact type:

atm password user card.

operative business rule

strict

atm password

user card

requests nserts

requests

inserts

Figure 4: SBVR Rule Signature

The ’enforcement level’ tells how to enforce the rule. A
details list of different level of enforcement is given in [10]
based on Business Motivation Model [1], but there is no
level which would inform us about whether a rule is au-
tomatable or not. So, we have added another level named

”automatable”which will compensate for the information re-
quired, as given in Figure 5. The result of adding the level
”automatable” will result in detection of automatable and
non-automatable rules at the time of writing rules.

It is obligatory that each exactly one if the i

Guidance Type :

Description : Each atm will request the password of card if the user has inserted

the card in atm.

Enforcement level:

Supporting fact type:

atm password user card.

operative business rule

automatable

atm password

user card

requests nserts

requests

inserts

Figure 5: Rule Signature for automatable rule

If the user sets enforcement level as automatable, it means
that this rule should be completely handled by the IT system
and participate in generating the activity diagram.

3.2 Logical formulation of Automatable Rules
Automatable rules generally shows the execution of activ-

ities and most of the activities should be guarded by some
pre-conditions. This is why most of the automatable rules
exist in if-then construct in SBVR, but they may exist in
some more constructs. For this paper, we are mainly han-
dling if-then construct. In SBVR, the logical formulation of
if-then rules is given as ”Implication”. An if-then rule relates
the activity and its preconditions with the consequent and
antecedent of the implications, respectively, as shown in the
Figure 6. A visual presentation of this concept is given as
follows:
Rule:

it is obligatory that each exactly one if a insertsatm password user cardrequest

Implication

Antecedent Consequent

Atomic Formulation Atomic Formulation

Fact Type Fact Type

user inserts card atm requests password

Figure 6: Logical formulation of if-then rules

To deduce the ”if p then q else r”, we will decompose the
else part again in ”if-then” construct. For example

if p then q else r

can be decomposed as

if p then q and if !p then r

31

3.3 Fact Types: Activities in an Activity dia-
gram

As we have already discussed that a fact type can be rep-
resented as term-verb-term. A verb can be of two types, one
which imply some action (transitive verbs) and other which
doesn’t imply any action (intransitive verbs). The state-
ments involving the transitive verbs will represent some ac-
tion. For example, the fact type ”user inserts card”is a state-
ment which include a transitive verb ”inserts” and shows an
action ”insertion of card into atm”. These types of fact types
can be assumed as the activities. The fact types having in-
transitive verb e.g ’has’ or ’is of’ will not be considered as
the activities because they shows the structural nature not
the imperative nature. For example ”card has pin” shows
that pin is an attribute of card.

Naming of activities can be done in the following two ways.

• Direct: Use the fact type name directly as the activity
name.

• Objectification: Use the objectification of fact types.
SBVR has a provision for giving instances of fact types
a type name; it is called ”objectification” [10]. For
example, an occurrence of the fact type ”user inserts
card” might be objectified as ”card insertion”. An ob-
jectification allows us to predicate things about a fact
type, like how, when and where they happened, etc.
Each activity in a UML AD may corresponds to an ob-
jectification. The corresponding transformation turns
the fact type into a command to bring such an action
into existence. Use of the infinitival form of the verb
phrase of the underlying fact type for an activity name
might be preferred, to reflect the imperative nature of
the activity: ”insert card,” the successful outcome of
which is an ”card insertion”.

The fact types associated with the automatable rules will
be used to form an ordered set of commands. It is a very
sensitive and non-trivial process as it must consider both
linguistic and logic especially the temporal aspects all of
which may not be specified directly in the set of declarative
rules. This transformation must be logically consistent with
the conceptual schema of SBVR.

3.4 SBVR to UML Activity Diagram Mapping
Rules

This section mainly deals with the mapping of SBVR com-
ponents to UML Activity diagram components.

3.4.1 Initial Node
This is the start state of the activity diagram. It doesn’t

play a very important role but significantly shows the start-
ing point of a scenario. We have given it a default name
”start”.

3.4.2 Activity Node
As we have already discussed in section 3.3, the fact types

having transitive verbs will be assumed as the activity node.

3.4.3 Activity Edge
An activity edge is a set of event, guard conditions and

actions which allows the transition from one activity node
to another activity node. An event is the trigger of the
transition. Upon triggering the transition, the condition is

checked, if the condition holds true, then the corresponding
action occurs and brings another activity into existence. It
is not necessary that a transition must have trigger. Transi-
tions without the trigger is known as trigger less transitions.
A typical SBVR operative rule may be written as:

upon event, if <propositional expression 2>, then
<propositional expression 1>.

But we are using the following format of operative business
rules in SBVR

<propositional expression 1> [if <propositional expression 2>]

So, the mapping from these type of SBVR rules to UML
AD will create the trigger less transitions. The propositional
expression 2 will help to find out the guard condition and
propositional expression 1 will help to find out the action.

• Guard Condition: Assume an operative business
rule like given below. The propositional expression 2 in

it is obligatory that each exactly one if a insertsatm password user cardrequest

if clause refers to the fact type ’user inserts card’. De-
pending upon the fact type, we are creating a boolean
variable like ’inserts card’. And the guard condition
will become ’insert card == true’ as shown in Table
1.

Fact Type Corresponding Boolean Variable Corresponding condition
user inserts card inserts card inserts card = true

atm request password request password request password = true

Table 1: Fact types(activities) and corresponding
pre-condition

• Action: These are the actions which should be in-
voked during the transition from one activity to an-
other. For example in the above rule, if a user in-
serts a card in the atm, then the atm will do an ac-
tion ”request password”. What we are doing is taking
the propositional expression 1 and find out the corre-
sponding fact type. Merging of verb and last term of
the fact type will create the name of the action like
”request password()” as shown in Table 2.

Fact Type Corresponding Action
user inserts card inserts card()

atm request password request password()

Table 2: Fact types(activities) and corresponding
Actions

3.4.4 ForkNode/JoinNode

• ForkNode: This is a pseudo-state where one transi-
tion is coming and multiple parallel transitions are go-
ing out of it. A SBVR rule like ”’it is obligatory that
each atm print exactly one receipt and each atm eject
the card if bank return badAccountmessage”’ represent
the enforcement of two activities ”’atm print receipt”’
and ”’atm eject card”’ on the delivery of bad account
message from the bank. This situation will generate
the fork state. There will be an incoming transition

32

having the guard condition ”’return badAccountmes-
sage == true”’ and two outgoing parallel transitions
pointing toward activities ”’atm print receipt”’ and ”’atm
eject card”’.

• JoinNode: This is another pseudo-state where multi-
ple parallel transitions are coming and only one tran-
sition is outgoing. The generation of this state will be
same as the above except there will be multiple guard
conditions and only one outgoing transition.

3.4.5 ActivityGroup
The ActivityGroup in UML activity diagrams are gen-

erally known as swimlanes which basically represents who
is doing the activity. The entity doing an activity will be
referred as the giver of the activity. As we have already dis-
cussed that the representation of fact type(activity) can be
of two type, active form and passive form. In a sentence hav-
ing an active, transitive verb, the giver of the action of the
verb is the subject of the sentence. In English, the ”giver”
corresponds to the object filling the role of the first place-
holder in the fact type form, e.g. ”customer” in ”customer
places order.” If the fact type form is passive, e.g. ”order
is placed by customer,” it is the reverse. These means the
same thing. They are synonymous forms. Facts of either of
these forms would be logically equivalent.

3.4.6 Activity Final Node
This is the point in an activity diagram where all the

activities get end up. We are creating a default end state
with the default name ”End”.

3.5 Rule Sequencing Engine
Rule Sequencing Engine(RSE) is an engine used to estab-

lish the order between activities. The engine consist of a
data structure(RSE-DB) used to contain the guard condi-
tions which have been occurred as true and a decision unit
to decide the next activity. For example, if we encounter a
rule like below then the fact type corresponding to if clause

it is obligatory that each exactly one if a insertsatm password user cardrequest

is ”user inserts card” and corresponding guard condition will
become inserts card == true. The RSE search its RSE-DB
for this condition to be true, if the condition exist and holds
true, then the fact type ’atm request password’ correspond-
ing to then clause will be the next activity. After getting the
next activity, a boolean variable ’request password’ is cre-
ated and get set to true and inserted into the database. This
concept is motivated from OMG’s Production Rule Repre-
sentation (PRR) [9] and RETE Algorithm [14].

3.6 Algorithm
The vocabulary and rules are parsed and instantiate the

SBVR Meta- Model given in [10]. Chapter 9 in [10] deduces
the logical formulation of a SBVR business rule. The logical
formulation of an automatable operative business rules will
be of our interest at the moment, as we are modeling the ac-
tivity diagram. Since we are generating the UML AD based
on the business artifacts given only in if-then rules, there
must be exactly one automatable rule which would not have
any if clause. This is because the absence of pre-condition
will allow the activity to occur initially. If there is more than

one such rule, then there will be two transitions from start
state which is against the UML AD Semantics. It is only
possible if those two activities occur in parallel, which will
be modeled as fork in AD. The fact type corresponding to
the automatable rule having no if clause, will be the first ac-
tivity. Create a boolean variable as shown in the section 3.5,
assign it as true and put into the RSE-DB. The detection of
further activities will be done with the help of ”implications”
given in SBVR Metamodel.

After deducing the logical formulations, we will look up
at all the ’obligation claims’ [10] that are ’implications’ to
find out the relation between the fact types of ’if’ con-
struct (antecedent of the implication) and those of ’then’
construct (consequent) in an if-then construct. To find out
the next activity, check the RSE-DB to know whether the
guard condition corresponding to the fact type in antecedent
is true or not. If the guard condition holds, find out the
fact type corresponding to consequent of the implication and
make it as the next activity and also create a corresponding
boolean variable with assigning ”true” value and put it into
the database of RSE. Also, create a transition from previ-
ous activity to the current activity as explained in section
3.4.3. If the guard condition doesn’t holds, then search for
the next implication until all the implications get visited.
The absence of such an implication will result in the end
state.

Start

Create Vocabulary

and Rules

Parse and Create

logical formulation(LF)

Find automatable rule

with no if clause

Get the fact type

from its LF

Create a start state

Make the fact type as

first activity

Create boolean variable,

assign true and put into RSE

database(RSE-DB)

Create transition with

var == true as guard and

activity’s function as action

Get fact type of antecedent

and find corresponding boolean

variable as true in RSE-DB

Get fact type of consequent

and make as next activity

and mark implication visited

Create transition from current

activity to end state

Variable == true

Variable == false

Non visited implication > 0

Non visited implication = 0

Look up at an implication

Figure 7: Flow Chart of SBVR To UML Activity
Diagram Transformation

The flow chart showed in Figure 7 present a general algo-
rithm to find out the activity diagrams. The special situ-
ation like an activity doesn’t have any outgoing transition,
fork and join; multiple incoming transitions to the end state
are not shown in the flow chart. They can be directly hard
coded on top of the basic algorithm shown in above flow
chart.

3.7 Example
Following are some snapshot of case study performed on

the tool developed by us. The vocabulary and rules are
generated for an atm machine and showing the interaction

33

with user. Figure8 is a snapshot of vocabulary showing the
terms and fact types for atm and user interaction.

Figure 8: A sample sbvr business vocabulary.

Figure 9 is a snapshot of the rules developed on top of the
vocabulary given in Figure 8. We are not able to show all
the rules due to space problem but showing some rules which
can clear the methodology expressed above. The attributes
of the rules shows whether it is operative or not and also
automatable.

Figure 9: Sample sbvr business rules.

The rules ”it is obligatory that each atm display exactly
one main-screen” in Figure 9 doesn’t have any precondition.
So, the execution flow will start from this rule. This rule is
associated with an atomic formulation which is based on the
fact type ”atm display main-screen”. We will create an initial
activity and name it same as the fact type ”atm display
main-screen”. Similarly, the whole AD will get generate. A
snapshot of the generated AD is given in Figure 10.

4. SBVR TO UML SEQUENCE DIAGRAM
The scenarios within an environment can be represented

as a sequence diagram which is described in [21]. [21] says
that a sequence diagram can be represented as the set of
messages with the information of their source and destina-
tion object in a sequential manner which is represented be-
low:

src1- msg1- dest1; src2- msg2- dest2.... srcn- msgn- destn;

To draw the sequence diagrams for the scenarios described
by SBVR Rules, we will use the AD generated in the last
section.

4.1 Mapping SBVR to UML Sequence Dia-
gram components

The SDs requires the messages having proper sequence
between them along with their source and destination object
information. The AD contains the activities with proper
sequence but don’t give any information about the objects.
In the following sections, we will see how the activities and
their sequence in AD can be used to create SDs.

4.1.1 Message
The messages in a SD are responsible for the occurrence

of events and actions in the sequence diagram. Due to its
logical similarity with the activities of AD, they can be given
the same name as of the activities. For example, the activity
”atm ejects card” in an AD can be a message in a SD. The
messages toward the life line of an object show the event
on the object while the messages away from an object are
considered as the actions of that object.

4.1.2 Source Object of a message
The source object of a message will be the ’doer’ of activ-

ity having same name as of that message. The semantics of
’doer’ is same as the ’subject’ in an English sentence having
an active verb. The subject is the noun who performs the
action of the verb. In SBVR’s structured English, a sentence
having an active, transitive verb, the ’doer’ of the action of
the verb is the object filling the role of the first placeholder
[10] in the fact type form e.g ”user” in ”user inserts card”. If
the fact type form is passive e.g ”card is inserted by user”,
then the ’doer’, would be the object filling the role of last
placeholder. The above two sentences have the same mean-
ing and must be presented as the synonym of each other
by BA during the development of Vocabulary. However, it
is preferable to use the active form wherever possible. The
above two fact type forms would have the same logical for-
mulation or logically equivalent.

4.1.3 Destination object of a message
The destination object of a message is one at which a mes-

sage get end up. That object will be the active object in the
system means the execution control will retain with this ob-
ject only. Every message has its own source and destination.
For example take two messages as shown below:

• source1 - message1 - destination1

• source2 - message2 - destination2

Assume message2 is next to message1 in the sequence.
After the occurrence of message1, destination1 will be the
active object and for the occurrence of message2, source2

should be the current active object. This implies that destination1

should be same as source2 as shown below:

source1 - message1 - destination1 = source2 - message2

It implies that the destination of a message will be the
source of the next message in the sequence.

4.1.4 State Invariant
An object in its life time, passes through several states.

These states are the different configuration of variables of
the object. For example, the object ”atm” has the variables
’card’ and ’password’ of type string and ”card=null and pass-
word=null” represents a state of ”atm”. The state change of

34

Figure 10: Sample Activity diagram from above sbvr vocabulary and rules.

the object occurs due to their action and events. For exam-
ple, the action ”user inserts card” will change the value of
card to ”card=c” and results in a new state(new configura-
tion) of atm ”card=c and password=null”. The invariants to
the state can be attached in many way like in plain english
or Object Constraint Language(OCL) [6]. It depends upon
the user and his requirements, how to attach them.

4.1.5 General Ordering
The General ordering in UML SD Metamodel [8] is a par-

tial ordering between the two messages. So, we will look up
only at the two activities in UML AD generated above and
map their ordering to the general ordering of messages.

4.2 Algorithm
The generation of UML SD involves the collaboration of

both UML AD and SBVR Metamodel. The flow chart for
this transformation is shown in Figure 11.

The algorithm tries to find out the messages of the SD.
According to [19], only activities of the AD can be trans-
formed to messages of the SD. Hence, we will set all the
activities of AD as the messages of SD. The first activity in
AD will be mapped to the initial message of SD. And the ac-
tion corresponding to this initial message will be the same as
the action corresponding to that activity in AD. This action
will become the send event of the destination message end.
We will generate the general ordering of messages through
the sequence between the activities in AD. The next thing
is to find out source and destination life lines for a message.
A detailed discussion of algorithm is given below.
The name of a message would be the name of activities which
in turn is the fact types, as discussed in section 4.1.1. In
SBVR metamodel, each fact type has some roles which are
situated at some placeholder. If the fact type(which is a
message in SD) is in active form, the source life line of the
message will be the term at first placeholder else it will be
the term at last placeholder. To find out the destination life
line, we will look up at the next message of current message
in general ordering. The source of the next message will
be the destination life line of current message as described

Start

Create Vocabulary

and Rules

Parse and Create

logical formulation(LF)

Generate Activity

Diagram

Get initial activity

Create message of

same name of current

activity

Assign action of current

activity as action of

current message

Get fact type

corresponding to

current messge

Get term at first

placeholder

Get term at last

placeholder

Set the term as

destination
Set the term as source

Find source of next

activity in AD

Set the term as

destination

Get next activity in AD

Create message of

same name of current

activity and set order

Active form
Passive form

I f no nex t act i v i t y

Else

If AD is not traversed

completely

Figure 11: Flow Chart of SBVR To UML Sequence
Diagram Transformation

in section 4.1.3. This whole process is repeated again from
finding the next activity, creating a message and finding the
source and destination lifelines for messages, until we will
not traverse all the activities in AD and reach the end state
from all the possible paths.
There may be some consecutive activities in AD whose sources
are same. For example the consecutive activities ”atm print
receipt” and ”atm ejects card” have the same source ’atm’.
In this case, the message corresponding to the activity ”atm
print receipt” will be a self message. A self message is a

35

message whose source and destination are same. Due to
this self message, the active object after the occurrence of
this message will remain the same which is ’atm’. And next
message ”atm eject card” will be sent from the object ’atm’.
It may also happen that the activity next to current activity
doesn’t exist in an AD, for instance, the activity immediate
previous to the end state. This activity doesn’t have any
next activity. In this case, we may have to compromise as
there is no information for the next object. If we see the
messages, they are transferring the control to the next des-
tination object. And if there is no information about the
next active object to take over the control, we have to keep
the control to current object. Due to which, the destination
life line for this message will be the same as source life line.
This is a limitation of this approach and will be recovered in
future work. In this approach, we are missing the detection
of actors. As our intension is to map the SBVR Metamodel
to UML SD metamodel not the UML SD syntax, this is not
important at the moment as UML SD Metamodel doesn’t
include any entity like actors.

5. SBVR TO UML CLASS DIAGRAM
The SBVR statements(business vocabulary and rules) are

declarative in nature. These statements are used to de-
clare the structural and operative behavior of the system.
The structure of the system mainly involves the classes, at-
tribute, functions and relationships between those classes.
For example, ’atm’ is a class which is a SBVR term and ’atm
has card-reader’ is a SBVR fact type which shows that the
class ’atm’ has an attribute of type ’card-reader’.The busi-
ness rules determine the correct value of the properties that
an object will have and methods of deriving the information
needed by the class. Appendix H in SBVR Specification
[10] gives a mapping from the SBVR Vocabulary and Rules
to the CD but it is not sufficient as it does not give any
information about the functions of business objects. The
contribution of this paper is to find out the functions of the
classes, association between them and cardinalities for asso-
ciation ends.
Some of the important rules of the mapping are described
here.

Mapping Rules in SBVR Specification:

• Class Name: These are the nouns or group words
which are used to define a concept and starts with
small letter. They are represented as classes in UML
CD.

• Instance Name: The individual concepts which be-
have as an instance of a particular class. The name is
followed by a colon and then by the term for its gen-
eral concept [10]. E.g. The Name ’SBI’ is an instance
of the class ’bank’ as shown in Figure 12.

S B I : bank

Figure 12: Class and its instance name

• Attributes: For the binary fact types [10] using ’has’
as the conjunction, the term at the last placeholder
will be represented as an attribute of the class if the

sentence is active else it will be the term at first place-
holder. For example, in the binary fact type in active
form ’atm has card-reader’, the class ’atm’ will have an
attribute ’cardreader’ which is of type ’machine’. Or-
dinarily a unary fact type is transformed into a UML
Boolean attribute. For example, in the unary fact type
’atm is open’, the class ’atm’ will have a boolean at-
tribute ’is open’ as shown in Figure 13 .

atm
Is_open : boolean

Figure 13: Class and its instance name

• Generalization and Specialization: [10] says that
’concept1 specializes/generalizes concept2’ which means
that a term can be specialized or generalized form of
another concept.

The example above shows that the term ”branch man-
ager” is a specialized role of ’manager’. So, the class
corresponding to the term ’branch manager’ will be a
subclass of the class corresponding to the term ’man-
ager’ as shown in Figure 14.

Figure 14: SuperClass and SubClass.

Mapping Rules of our approach:

• Functions: SBVR specification helps us to construct
the CD but don’t give any information about func-
tions of classes. Before we draw the class diagram, we
should know which function will belong to which class.
To find out this information, we will follow the same
approach as we did in generating the SD in section 4.
In a SD, one object interacts with another by send-
ing it a message. For instance, the atm will send the
message ”atm requests password” to the ’user’ object.
This message prompts ’user’ to enter the password of
card. In the sequence diagram, this message is associ-
ated with an action ”request password()”. Jon Whittle
et al., in his study [21] has given some hints about the
relationships between SD and CD. [21] will help us to
conclude that the action corresponding to the messages
will become a function for the source object , that is

36

’atm’. So, the class ’atm’ will have the function ’re-
quest password()’. The paper is not able to find out
the return type and arguments of these functions at
the moment. We will recommend the user to set these
entities manually. This problem will be handled in the
future.

• Association: The association between the classes can
be figured out from fact types. Binary Fact types
[10] actually establish the relationship between the two
business entity. For example, the fact type ”card uses
password” establish the relation ship between the card
and password. But it doesn’t give any information
about multiplicity at association ends. It is discussed
in the next point.

• Multiplicity: There are some constraint rules which
constraint an association between the two classes. In
these rules, the quantifier associated with term tells
about the cardinality at association ends. For example,
the following rules says that each card uses at most
one password. The quantifier ’at most one’ tell that
the multiplicity at ’password’ end should be ’0..1’ as
shown in Figure 15. This concept is motivated from
[7].

It is necessary that each card uses at most one password
It is necessary that each atm accepts exactly one card
It is necessary that each bank provide at least one atm

card atm

password
0..1

1

bank

1..*

Figure 15: Multiplicity and association between
classes

6. DISCUSSION
This research brings us to a very important outcome which

allows the business people work independently of IT to build
up their system. Originally, the SBVR was developed only
to communicate or transport the business semantics between
the two communities. This research adds one more applica-
tion area to the SBVR enabling it to generate PIM Models
too.
This paper is not able to capture modalities [10] of the SBVR
business rules into UML. Rather than capturing the modal-
ity of rules in UML Models, we are assuming that all the
activities have highest severity of action. It means that in
case any violation of a business rule, an error message will
get reflect.
There are some more limitations of our approach like we are
not able to find out the input parameters of the functions
of classes. To construct the AD, we are taking only those
rules into account which are in ’if-then’ construct where as
automatable rules may exist in some more constructs too.
The reason for taking only this construct is explained in sec-
tion 3.2.

A prototype of this approach has been developed in Java
and some test cases has already been tested on this tool
as shown in section 3.7. The tool allows to generate, up-
date and validate the business vocabulary and rules, creates
a tree structured logical formulation for business rules and
creates UML SD,AD and CD.

7. RELATED AND FUTURE WORK
As the SBVR was accepted by the OMG in 2005, and is

due to be finalized in September 2007, little work has been
done in this regard. Following are some of the related work:

Mark H. Linehan [16] explores the work to specify the
semantics and rules in SBVR as extension of business mod-
els that are automatically translated to PIMs which in turn
get converted to PSMs. This technology is known as Model
Driven Business Transformation (MDBT). Here, PIM model
include UML Class diagram, State Chart and Use Case Di-
agram. But the paper doesn’t explicitly specify the algo-
rithms and there is no such information of how to find the
function of the classes too.

Markus Schacher [18] explores the work to view the Busi-
ness rules in the perspective of SBVR and CASSANDRA
[7]. This paper develops an environment completely based
on the CASSANDRA platform to create executable UML
Models (also called xUML Models) from the Business Rules.
It also provides a rule-set to transform SBVR Vocabulary
and Rules into Class Diagram, Use Case Diagram based
on xUML platform. This paper also shows how the busi-
ness activities represented in BPMN can be transformed
to xUML Notation. Markus mainly explains the contrast
between SBVR and xUML whereas our paper represents a
proper flowchart to convert SBVR business rules to UML.

Dane Sorensen et al., in his study [20] shows the lack
of ontology in the SBVR MetaModel and also shows how
ontology integration into SBVR could improve the future
releases of this standard.

SBeaVer [17] is an open source SBVR tool created by Mau-
rizio De Tommasi and Pierpaolo Cira at the University of
Lecce‘in Italy, in a project funded by the European Digital
Business Ecosystem [2] project. This tool runs as a plugin
for Eclipse platform which enable the user to create, validate
and verify the business vocabulary and rules but this tool
neither generates the logical formulation nor any platform
independent model.

The approach presented in this paper still has some limi-
tation and in the future work, we will try to minimize them.
Future work would mainly emphasize on capturing of the
rules in OCL [6]. Petri Selonen et al., in [19] show which
UML diagrams are completely interchangeable and which
are only supported. So, we will also try to transform the
SD to the Communication diagram, AD to state chart dia-
gram and try to draw the Object and Component Diagrams.
This transformation among UML diagrams will helps us to
analyze all the UML diagrams at PIM space before moving
toward PSMs.

8. CONCLUSIONS
We have presented a methodology to generate UML AD,

SD and CD from the SBVR model driven business design.
These business designs are CIMs and UML models are PIMs
in MDA. SBVR allows developing the business vocabularies

37

which include the basic business terms and fact type, and
business rules. The fact types involving transitive verbs can
be considered as the activities. Automatable rules, which
comes under a subcategory of operative business rules, are
responsible for detecting the activities and establishment of
sequence between the rules. A sequence diagram is another
way to represent the requirements of a system through in-
teraction between the objects. Due to the logical similarity
between the activities and messages, we have chosen the
same name for messages as of activities and sequence be-
tween the messages will be the same as between the activi-
ties in AD. The doer of an activity will be the source object
of the message whose name is same as of that activity. The
destination object of the current message will be source of
the next message in the sequence. Since most of the rep-
resentations of business requirements do not specify all the
business artifacts which may create some conflicts, we will
use the theory given in [21] to remove any conflicts in the
SD.

Class diagram is the model which shows the structure of
your system. Business terms in the business vocabulary will
be the classes of the system. Fact types having various forms
of ”has”, ”to be” and ”is of” will help in detecting the at-
tributes of a class. The actions associated with the messages
in SD, will become the functions of the source object. The
business terms which are specialized role of some other terms
will give relation of super and base class. The business rules
will set the cardinality at the ends of an association.

The work in the paper basically bridges the gap between
business modeling people and IT people. The business peo-
ple who are interested in writing the business rules will write
them in SBVR. Since SBVR is completely declarative in na-
ture, it needs some external efforts to extract the imperative
nature embedded in those declarative sentences. This imper-
ative nature can be shown in UML and BPMN too. We have
chosen UML because it is more efficient and adaptable for
example, a UML AD can be used as a workflow specification
language [12] and also they are very efficient for reverse and
forward engineering.

Main contribution of this paper is to bridge the gap be-
tween business people and IT people by allowing them to
convert business designs into platform independent UML
AD, SD and CD, which can be further transformed to other
diagrams [19] to check any inconsistencies between the ac-
tual and intended behavior [15].

9. ACKNOWLEDGMENTS
We wish to thank to European Union’s 6th Framework

Programme of Research for sponsoring this research under
the OPAALS [3] project.

10. REFERENCES
[1] Business motivation model. URL:

http://www.omg.org/docs/dtc/06-08-03.pdf.

[2] Digital business ecosystem project, ”an internet based
software environment in which business applications
can be developed and used”. Project. URL:
http://www.digital-ecosystem.org/.

[3] Open philosophies of associative autopoietic digital
ecosystems (opaals). Network of Excellence, funded by

the European Union’s 6th Framework Programme of
research.

[4] Meta object facility specification, 2002. URL:
http://www.omg.org/docs/formal/02-04-03.pdf.

[5] Model driven architecture specification. Specification,
Object Management Group, 2003. URL:
http://www.omg.org/docs/omg/03-06-01.pdf.

[6] Object constraint language specification, 2003. URL:
http://www.omg.org/docs/ptc/03-10-14.pdf.

[7] Executable uml specification. Object Management
Group, May 2004.

[8] Unified modeling language specification. Specification,
Object Management Group, 2004. URL:
http://doc.omg.org/ptc/2004-10-05.

[9] Production rules representation. Specification, Object
Management Group, 2005. URL:
http://www.w3.org/2004/12/rules-
ws/slides/paulvincent.pdf.

[10] Semantics of business vocabulary and rules
specification. Object Management Group, March 2006.

[11] F. Bry and P. lavinia Patranjan. Use cases for
reactivity on web: Using eca rules for business process
modeling. Report, INSTITUT FUR INFORMATIK
der Ludwig-Maximilian-Universitat Munchen, 2006.
URL:
http://www.pms.ifi.lmu.de/publikationen/diplomar-
beiten/Inna.Romanenko/DA Inna.Romanenko.pdf.

[12] M. Dumas and A. H. M. Uml activity diagrams as a
workflow specification language. In Fourth
International Conference on the Unified Modeling
Language (UML 2001), pages 76–90, Toronto, Canada,
2001.

[13] H.-E. Eriksson and M. Penker. Business Modeling with
UML: Business Patterns at Work. John Wiley and
Sons, Inc., New York, 2000.

[14] C. L. Forgy. Rete: a fast algorithm for the many
pattern/many object pattern match problem. Expert
systems: a software methodology for modern
applications, IEEE Computer Society Press, Los
Alamitos, CA, pages 324 – 341, 1991.

[15] A. Gupta and A. Raj. Strengthening method contracts
for objects. In 13th Asia Pacific Software Engineering
Conference, pages 233–242, Bangalore, India,
December 2006.

[16] M. H. Linehan. Semantics in model-driven business
design. Models/UML Conference, 2001.

[17] D. T. Maurizio and C. Pierpaolo. Sbeaver business
modeler editor. URL: http://sbeaver.sourceforge.net/.

[18] M. Schacher. Moving from zachman row 2 to zachman
row 3. Business Rules Journal, 7(6), June 2006.

[19] P. Selonen, K. Koskimies, and M. Sakkinen.
Transformation between uml diagrams. Journal of
Database Management, 14(3):37–55, 2003.

[20] D. Sorensen, A. Pastiak, A. Mitra, and A. Gupta.
Integrating ontology into sbvr. Report 1033, Eller
College of Management, 2006. URL:
http://www.knowgravity.com/pdf-
e/CASSANDRA xUML E.pdf.

[21] J. Whittle and J. Schumann. Generating statechart
designs from scenarios. International Conference on
Software Engineering, pages 314 – 323, 2000.

38

