
Interim Report on

Visual Programming
&

Visualisation of
Program Execution

in Prolog

Simon Holland
simon@uk.ac.abdn.csd

(Presentation at PPIG 1992)

Department of Computing Science
Kings College

University of Aberdeen
Aberdeen

Scotland AB9 2UB

OVERVIEW

• Intro - what do we mean by
 • visual programming (VPP)
 • vis of program execution (VPE)

• Unique features of VPP + VPE
 • integrated system: one formalism
 • factory metaphor: non-progs?
 • exec model uses 3 spatial dims

• Visual programming in Prolog
• Visualisation of Prolog execution
• Factory Metaphor
• Visualising list processing

• Implementations
• Related systems & comparisons

• Hypotheses about VPE and VPE
• Limitations & further work

• Summary & Conclusions

VISUAL PROGRAMMING IN PROLOG

 Facts in a database in VPP

 parent(abe,ben).
 infects-with(ben,X,measles).

abe parent ben

ben
infects-with measles

X

 • Constants and variables - links
 • Relations - boxes

 • Box shape does not matter
 (just number of ports and name)

 • Upper and lower-case distinction for
 variables/constants as usual

 • Ordering of clauses in database
 • left to right, top to bottom
 • but optional numbering system
 spatially ordered view
 numbering system ordered view

parent

parent

bob

parent liz

parent

parent

pam ann

pat

tom

parent jim

parent(pam,bob).
parent(bob, ann).
parent(tom,bob).
parent(bob, pat).
parent(pat, jim).

 parent(tom, liz).

• "Common" display of atoms not compulsory
• Can be displayed as separate clauses
• In some situations, can help to show potentially

 inferrable relationships easily
• NB in complex situations, this style of display may

 not be helpful

• Editor does not allow shared variables between clauses
 • except in queries
 • except within rules
 • (no conjunctive clauses allowed in database)

Clauses with shared
constants in database

Simple queries
 parent(Y,jim?)

Conjunctive queries
 Put more than one clause in query box

Conj queries with shared vars
 Allowed

Disjunctive queries
 Pose the disjunctive clauses as queries one after another.

<make diag common - show ans as visula - sev views of

answer>

Queries

pat parentX

Query box

Question:

X = bob Y = patAnswer:

First Next All Cancel
Find

solution:

jimY parent

Rules
 sister(X,Y):-
 parent (Z,X),
 parent(Z,Y),
 female(X),
 different(X,Y).

Z

parent

parent

X

Y

female

different

1

2 4

33
sister

• Within a rule, optional variable & constant sharing
(e.g X,Y,Z above)

• As with clause order in program, clauses in rule
ordered left to right top to bottom.

• Adjust clause order by moving clauses physically

• Optionally, may use (and alter) numbers to overide
default ordering

Current Prototype (slightly idealized)
Docks within box

Schematic overview

• menu & strip of graphical tools
• windows for - prog/query/answer
• soldering iron to connect up boxes
• scissors

• boxes types to choose from
• typing tool to name boxes and variables

• Boxes may be grown or shrunk for rules.
• Boxes can be moved or deleted.
• Moving boxes en masse - watch wires

• Any size programs - scrollable window
• Can generate text prolog in new window

• magnified, reduced & alternative views
• indexes and find functions
• numbering tool
clauses within programs
goals within rules

Programming using VPP
File Edit View Search Order Fonts Query Windows

Y
parentX Zpredecessor

predecessor

2

parentX

predecessor

Z

1

A

Custom

System

?

New custom

abe parent ben

Database

ben parent charlie

parentcharlie eddie

Query

ben parent X

ben parent charlie

Answer

BASIC IDEA BEHIND VISUALISING
PROLOG EXECUTION (VPE)

Simple view with details of unification,
search & alternatives not shown

Simple recursive procedure

predecessor(X,Z):-
 parent(X,Z).

predecessor(X,Z):-
 parent(X,Y),
 predecessor (Y, Z).

Database of facts

parent(adam, ben).
parent(ben, charlie).
parent(charlie, zak).

 Query:
 predecessor(adam,zak)?

File Edit View Search Order Fonts Query Windows

Y
parentX Zpredecessor

predecessor

2

parentX

predecessor

Z

1

A

Custom

System

?

New custom

parent predecessorparent

predecessor

Y3

parent predecessor

predecessor

Y2
parent

predecessor

predecessor

parent
Y1

predecessor

parent

adam

adam

adam

ben

ben

zak

zak

zak

zakcharlie

parentcharlie des zak

predecessor

parent zakdes

where is dtabase graphically? cane common terms?

parent

predecessor

Y2

predecessor

predecessor

parent
Y1

predecessor

parent

adam

adam

ben

zak

zak

zak

charlie zak

predecessor

predecessor

2

2

1

maybe not show variables
cane all this??

parent
adam

predecessor

predecessor

2

parent

predecessor

parent
ben charlie zak

2

1

Backtracking, cut, not, etc

party(X):- happy(X), birthday(X).
party(X):- friends(X,Y), sad(Y).
happy(X):- hot, humid, not raining,!,
swimming(X).
happy(X):- cloudy, watching_tv(X).
happy(X):- cloudy, having_fun(X).
cloudy.
hot.
humid.
having_fun(tom).
having_fun(sam).
swimming(john)
watching_tv(john).
sad(bill).
sam(sam).
birthday(tom)
birthday(sam)
friends(tom,john).
friends(tom,sam).

Figure 10. A simple example program reproduced
from Eisenstadt and Brayshaw (1987).

query
 party(Name)?

happy

partyName

Name

1

birthday

happy

party

hot

humid

!

swim

hot

humid

raining

swim

not raining

john

john

Job 1 Trying 1/2?

Job 2 Tried 1/3 remaining 2/3 cut?

Job 8 Tried 2/2x

!

!

x

!x

!x

Job 3 Tried 1/1!

Job 4 Tried 1/1!

Job 5 Tried 1/1!

Job 6!x

Job 7 Tried 1/1!x

x

Figure 11. A snapshot of the trace in VPE of the program shown in figure 10 given the query

party(Name)? up until backtracking begins with the failure of birthday/1.

party

Name

friends

2

sad

Y= john

friendstom john sadjohn

tom

party

Name

friends

2

sad

Y=sam

friendstom sam sadsam

tom

happy

partyName

Name

party

1

birthday

happy

party

hot

humid

!

swim

hot

humid

raining

swim

not raining

john

!

party

Figure 12. An outline trace in VPE of the complete execution space

of the program shown in figure 10 given the query party(Name)?

 POSSIBLE BENEFITS OF VPP and VPE

• In cases where non-programmers need to understand or
modify simple Prolog code, but may not be interested
in learning Prolog, VPP may score well.

•The "factory construction" metaphor outlined in

Holland (1991) which gives a homely rationale for the
execution of a Prolog interpreter may be useful in this
context

• In databases and rules with not overly complex shared

terms, VPP can allow inter-relationships to be noted
rapidly without having to memorise variable names,
scan for matches, so lessening load on short term
memory.

• VPE may be useful for inspecting complex
relationships broken down into their sub relationships
(i.e. proof trees where branches that proved resulted in
failure are ignored). Visual 3D presentation of this kind
of information may be useful cf Info Visualiser

• VPP makes it quite clear that predicates and structures

are different kinds of objects. This may help to avoid
some misconceptions .

• VPP can help to elucidate the tree-like nature of

structures by showing their form graphically.

• VPP can on

occasion
help to
clarify
aspects of
Prolog even
to slightly
more
experienced
programmers. For example, it reveals graphically that
the predicate 'not' could not take a predicate as an
argument, but must take a term or structure (figure
13). This might help to avoid persistent misconceptions
about "not" and the absence of second order behaviour
in Prolog in general.

not likes

binky bongo

Figure 13. Representation of not(likes(binky,bongo).

 LIMITATIONS AND WEAKNESSES
OF VPP

Current implementation limited

Parts of design need refining

Shared term idea not always helpful

Not aimed at general purpose programming for

professional programmers.

May help modest Prolog beginners

Aimed primarily at non-programmers using Prolog for

partic applications e.g. ITS, Music programming, Lab
control

RELATED IDEAS AND SYSTEMS

Inspired by

 • Steele's (1980) notation for constraint
 programming

 • Attempts to design a graphic programming
 language for a constraint-based musical
 planner (Holland, 1980)

Most closely related existing system

 • TPM (Eisenstadt & Brayshaw)

FURTHER WORK

• More refined implementation of VPP
 Implement VPE (Holland, Treglown)
 Instantiation flows
 Selective views, prune,zoom, 3D rotation
 Summary view

• Various extensions or VPE have been designed which

in principle could make it as fully-featured a debugger
as TPM, although that is not its primary purpose.

• Formative evaluation: experiments with users

CONCLUSIONS
VPP and VPE

•VPP (short for Visual Programming in Prolog).

• Create & edit Prolog programs graphically
• Queries can be constructed in a similar manner.

• VPP may make some aspects of programming easier for

beginners & non-programmers
• VPP programs can sometimes be less clear than textual

equivalent

Not aimed at general purpose programming for professional

programmers.
May help some beginners
Aimed primarily at non-programmers using Prolog for

application-specific graphic "construction kits".

• Extension of VPP dubbed VPE (Visualiser for Prolog

Execution)

• Animated 3D model of program execution using same

building blocks as VPP
• VPE could in principle be extended fully-expressive debugger

• Further development & study required
• Implementation
 • currently two prototypes of VPP
 • Philip
 • Treglown

