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Using Uncertain Knowledge

➤ Agents don’t have complete knowledge about the world.

➤ Agents need to make decisions based on their uncertainty.

➤ It isn’t enough to assume what the world is like.

Example: wearing a seat belt.

➤ An agent needs to reason about its uncertainty.

➤ When an agent makes an action under uncertainty it is

gambling�⇒ probability.
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Probability

➤ Probability is an agent’s measure of belief in some

proposition — subjective probability.

➤ Example:Your probability of a bird flying is your

measure of belief in the flying ability of an individual

based only on the knowledge that the individual is a bird.

➣ Other agents may have different probabilities, as they

may have had different experiences with birds or

different knowledge about this particular bird.

➣ An agent’s belief in a bird’s flying ability is affected

by what the agent knows about that bird.
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Numerical Measures of Belief
➤ Belief in proposition,f , can be measured in terms of a

number between 0 and 1 — this is theprobability off .

➣ The probabilityf is 0 means thatf is believed to be

definitely false.

➣ The probabilityf is 1 means thatf is believed to be

definitely true.

➤ Using 0 and 1 is purely a convention.

➤ f has a probability between 0 and 1, doesn’t meanf is

true to some degree, but means you are ignorant of its

truth value. Probability is a measure of your ignorance.
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Random Variables
➤ A random variableis a term in a language that can take

one of a number of different values.

➤ The domain of a variableX, writtendom(X), is the set

of valuesX can take.

➤ A tuple of random variables〈X1, . . . , Xn〉 is a complex

random variable with domaindom(X1) × · · · × dom(Xn).

Often the tuple is written asX1, . . . , Xn.

➤ AssignmentX = x means variableX has valuex.

➤ A proposition is a Boolean formula made from

assignments of values to variables.
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Possible World Semantics

➤ A possible worldspecifies an assignment of one value

to each random variable.

➤ w |= X = x

means variableX is assigned valuex in world w.

➤ Logical connectives have their standard meaning:

w |= α ∧ β if w |= α andw |= β

w |= α ∨ β if w |= α or w |= β

w |= ¬α if w �|= α

➤ Let � be the set of all possible worlds.
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Semantics of Probability: finite case

For a finite number of possible worlds:

➤ Define a nonnegative measureµ(w) to each set of worlds

w so that the measures of the possible worlds sum to 1.

The measure specifies how much you think the worldw

is like the real world.

➤ The probability of propositionf is defined by:

P(f ) =
∑
w|=f

µ(ω).
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Axioms of Probability: finite case

Four axioms define what follows from a set of probabilities:

Axiom 1 P(f ) = P(g) if f ↔ g is a tautology. That is,

logically equivalent formulae have the same probability.

Axiom 2 0 ≤ P(f ) for any formulaf .

Axiom 3 P(τ ) = 1 if τ is a tautology.

Axiom 4 P(f ∨ g) = P(f ) + P(g) if ¬(f ∧ g) is a tautology.

These axioms are sound and complete with respect to the

semantics.
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Semantics of Probability: general case

In the general case we have a measure on sets of possible

worlds, satisfying:

➤ µ(S) ≥ 0 for all S ⊆ �

➤ µ(�) = 1

➤ µ(S1 ∪ S2) = µ(S1) + µ(S2) if S1 ∩ S2 = {}.
Or sometimesσ -additivity:

µ(
⋃

i

Si) =
∑

i

µ(Si) if Si ∩ Sj = {}

ThenP(α) = µ({w|w |= α}).
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Probability Distributions

➤ A probability distribution on a random variableX is a

functiondom(X) → [0, 1] such that

x 
→ P(X = x).

This is written asP(X).

➤ This also includes the case where we have tuples of

variables. E.g.,P(X, Y , Z) meansP(〈X, Y , Z〉).
➤ Whendom(X) is infinite sometimes we need a

probability density function...

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 10, Lecture 1, Page 10

Conditioning

➤ Probabilistic conditioning specifies how to revise beliefs

based on new information.

➤ You build a probabilistic model taking all background

information into account. This gives the

prior probability.

➤ All other information must be conditioned on.

➤ If evidencee is the all of the information obtained

subsequently, theconditional probabilityP(h|e) of h

givene is the posterior probabilityof h.
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Semantics of Conditional Probability
Evidencee rules out possible worlds incompatible withe.

Evidencee induces a new measure,µe, over possible worlds

µe(ω) =



1
P(e) × µ(ω) if ω |= e

0 if ω �|= e

The conditional probability of formulah given evidencee is

P(h|e) =
∑
ω|=h

µe(w)

= P(h ∧ e)

P(e)
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Properties of Conditional Probabilities

➤ Chain rule:

P(f1 ∧ f2 ∧ . . . ∧ fn)

= P(f1) × P(f2|f1) × P(f3|f1 ∧ f2)

× · · · × P(fn|f1 ∧ · · · ∧ fn−1)

=
n∏

i=1

P(fi|f1 ∧ · · · ∧ fi−1)
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Bayes’ theorem

The chain rule and commutativity of conjunction (h ∧ e is

equivalent toe ∧ h) gives us:

P(h ∧ e) = P(h|e) × P(e)

= P(e|h) × P(h).

If P(e) �= 0, you can divide the right hand sides byP(e):

P(h|e) = P(e|h) × P(h)

P(e)
.

This is Bayes’ theorem.
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Why is Bayes’ theorem interesting?

➤ Often you have causal knowledge:

P(symptom | disease)

P(light is off | status of switches and switch positions)

P(alarm | fire)

P(image looks like | a tree is in front of a car)

➤ and want to do evidential reasoning:

P(disease | symptom)

P(status of switches | light is off and switch positions)

P(fire | alarm).

P(a tree is in front of a car | image looks like )
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