Modeling Discrete Optimization Assignment:
Port Scheduling

1 Problem Statement

Scheduling bulk mineral ports is a complex and important task for Australia. We have some of the
busiest bulk mineral ports in the world. Ships arrive at the port to pick up a set of stockpiles. The
aim is to delay the ships the least amount of time possible from when they arrive.

The stockpiles are stored on pads, which are very long. Here we consider the simple example of a
single long pad. The stockpiles are stacked onto the pads over time, as trains bring in the materials
for the stockpile. In this simple model we will just assume a stacking time for each stockpile and
otherwise not worry about stacking. The pad causes a packing problem, we have to reserve space
on the pad for a stockpile from the moment we start stacking to the moment it is fully reclaimed.
Two stockpiles cant co-exist in space time.

The critical issue is the reclaiming of the stockpile from the pad to load it onto the ship. We
will schedule the reclaimers.

pad
\vl rail 1 \VI
A4 rair 2 \ /[
V V

Reclaimers run on rails beside the pads. There can be multiple parallel rails, and multiple
reclaimers on each rail. Reclaimers on the same rail can not pass each other, they have to stay in
the same order. Reclaimers on separate rails are free to move past each other.

When a ship arrives in berth we can start reclaiming its stockpiles. The reclaimer has to be
at the westernmost end of the stockpile to reclaims the material, once finished it can move to the
next task. The time to reclaim is given by the size of the stockpile. The reclaimer takes time to
get to the stockpile to begin the reclaim.

The assignment is broken into stages though each of them uses the same input data format.

1.1 Stage A: Packing the Pad

The core of the port scheduling problem is to put stockpiles on the pad and then take them off again
onto ships. This is a two dimensional packing problems where stockpiles are rectangles which have
one dimension the segment of the pad they occupy from the westend to the eastend, and the second
dimension is the time segment they occupy from the start of stacking to the end of reclaiming.

In the first stage you simply need to pack the stockpiles on the pad so they dont overlap in
space-time.

Data is of the form:

int: nr; % number of reclaimers

% number of rails = nr for stages A,B,C,D,E

% number of rails = (nr + 1) div 2 for stage F
set of int: RECLAIMER = 1..nr;
bool: stageF;

int: ns; % number of stockpiles
set of int: STOCKPILE = 1..ns;
array [STOCKPILE] of int: size; % size in 10000 tonnes

int: maxtime; % time considered
set of int: TIME = 0..maxtime;

int: nsh; % number of ships

set of int: SHIP = 1. .ns;

array [STOCKPILE] of SHIP: ship; % which ship takes stockpile
array [SHIP] of TIME: arrival; % when ship arrives in port

int: len; % length of pad
set of int: POSITION = O..len;

int: stack_time; % time to stack 1 unit (10000 tonnes)
int: reclaim_time; % time to reclaim 1 unit
int: reclaim_speed; % time for reclaimer to move 1 unit

For the purposes of this stage we only are interested in the stockpile data. You can assume the
stageF parameter is false (until stage F).

The critical decisions that need to be made are: for each stockpile the position of its western
most end on the pad, when it is started to stack, and when it is started to reclaim. In later stages a
critical decision will be which reclaimer is used for each stockpile, but for this stage this can always
be set to 1.

array [STOCKPILE] of var POSITION: westend;
array [STOCKPILE] of var TIME: stack;
array [STOCKPILE] of var TIME: reclaim;
array [STOCKPILE] of var RECLAIMER: which;

A stockpile occupies a position on the pad from its westend to its eastend = westend + size. It
occupies a time on the pad from its stacking start time to the end of its reclaiming time. No two
stockpiles can overlap in both time and position (but note that a stockpile could be in position 0..4
and another in position 4..8 at the same time and this is not an overlap, or on the pad from time
0..10, and then another stockpile in the same position from time 10..14 and this is not an overlap).

We assume that stacking a stockpile requires stack_time times its size in time units, and
stacking must be finished before reclaiming begins. The dwell time of the stockpile is the period in
between when stacking ends and reclaiming begins.

Reclaiming a stockpile requires reclaim time times its size.

Output of the plan should be of the form

westend = array of positions of westend;
eastend = array of positions of eastend;
stack = array of stacking start times;
endstack = array of stacking end times;
reclaim = array of reclaiming start times;
finish = array of reclaiming end times;
which = array of which reclaimers used;

For stage A, the which array can be set to all 1s.
Note that you may well have to explore some complex search strategies to generate solutions to
even this first stage version of the problem. Default search is not likely to be effective.

1.2 Stage B: Reclaimer Assignment

In reality each stockpile has to be reclaimed by one of the reclaimers in the port. For stage B we
need to ensure that reclaiming is possible.

You should add constraints to your model to enforce that two stockpiles reclaimed by the same
reclaimer do not overlap in time. The which variables are now important.

The input and output format is unchanged from stage A, but the which array has meaning.

1.3 Stage C: Ship Constraints

Each stockpile must be reclaimed onto the ship it is destined for. In this stage for the first time we
consider the ship information.

You should add constraints to your model so that no stockpile can be reclaimed onto a ship
before the arrival time of the ship. Also no two stockpiles can be reclaimed onto the same ship at
the same time. Make sure these reclaims do not overlap in time.

1.4 Stage D: Reclaimer Movement

The present model assumes that reclaimers can instantly move from one position on the pad to
another. This is not correct, we need to take into account its speed of movement.

Add constraints to your model to ensure that if a reclaimer finishes reclaiming a stockpile
with westend at x and then has to start reclaiming a stockpile with westend at y there is at least
|y — x| * reclaim speed time between these two events.

1.5 Stage E: Objective

Now we are ready to consider the objective. The aim of the port scheduling is to minimize the
total time of ships at berth. A ship is at berth from its arrival time to the end of the reclaiming of
the last stockpile destined for this ship.
Add a definition of the objective to your model and change the model to minimize this value.
You may well need to significantly change your search strategy to get good solutions for the
objective.

1.6 Stage F: Rail Constraints

In reality usually there are two reclaimers per rail line, and they cannot cross.

Add constraints in your model so that the two reclaimers on rail ¢ numbered 2¢ — 1 and 2i for
1 € 1.nr div 2 remain so the western one 2¢ — 1 is never east of the eastern one 2i. Note they can
legitimately be in the same position (this is for simplicity, its not very real). Note that if there are
an odd number of reclaimers the last reclaimer is on its own rail and has no further constraints.

1.7 Visualization

In order to help you visualize the results of the schedule we provide a program: portschedule _draw.cpp
which will take the output of the model and plot it. For example for the input data

nr = 2;
stageF = true;

ns = 7;

nsh = 4;

size = [4, 8, 2, 5, 4, 3, 31;
ship = [1,2,3,1,4,2,3];
maxtime = 200;

arrival [0, 0, 20, 40];
len = 12;

stack_time = 4;
reclaim_time = 3;
reclaim_speed = 1;

gives a solution

westend = [0, O, 4, 0, 8, 6, 8];

eastend = [4, 8, 6, 5, 12, 9, 11];

stack = [0, 29, 0, 85, 21, 0, 52];
endstack = [16, 61, 8, 105, 37, 12, 64];
reclaim = [16, 61, 23, 105, 40, 12, 128];
finish = [28, 85, 29, 120, 52, 21, 137];
which = [1, 1, 2, 1, 2, 2, 11;

The plot for this solution is shown in Figure [I] which shows for each the stockpile the stacking
time, the dwell time the reclaiming time, and the path of each reclaimer in its reclaiming tasks.
Note how the reclaimer 2 stays east (above) reclaimer 1, and we can see delays caused by moving
the reclaimers. Be aware that sometimes the visualization can show a crossing which does not need
to be there since it simply connects the reclaim jobs in order. The grader will detect when the
crossing must occur and flag an error (for stage F).

2 Instructions

Edit portschedule.mzn to solve the optimization problem described above. Your portschedule.mzn
implementation can be tested on the data files provided. In the MINIZINCIDE use the play icon to
test your model locally. At the command line use,

mzn-gecode ./portschedule.mzn ./data/<inputFileName>

Pad position
o
I

0 20 40 60 80 100 120 140

Time
R_1=-®=: R2= o=

Figure 1: Pad diagram showing stacking, dwell, and reclaiming for each stockpile, as well as the
path of the reclaimers.

to test locally. In both cases, your model is compiled with MINIZINC and then solved with the
GECODE solver.

Resources You will find several problem instances in the data directory provided with the hand-
out.

Handin From the MINIZINC IDE, the courseraicon can be used to submit assignment for grading.
From the command line, submit. py is used for submission. In both cases, follow the instructions to
apply your MINIZINC model(s) on the various assignment parts. You can submit multiple times and
your grade will be the best of all submissionsE] It may take several minutes before your assignment
is graded; please be patient. You can track the status of your submission on the programming
assignments section of the course website.

!Problem submissions can be graded an unlimited number of times. However, there is a limit on grading of model
submissions.

3 Technical Requirements

For completing the assignment you will need MINIZINC 2.0.x and the GECODE 4.4.x solver. Both of
these are included in the bundled version of the MINIZINC IDE 0.9.9 (http://www.minizinc.org).
To submit the assignment from the command line, you will need to have |Python 2.7.x installed.

http://www.minizinc.org/2.0/
http://www.gecode.org
http://www.minizinc.org
http://www.python.org

	Problem Statement
	Stage A: Packing the Pad
	Stage B: Reclaimer Assignment
	Stage C: Ship Constraints
	Stage D: Reclaimer Movement
	Stage E: Objective
	Stage F: Rail Constraints
	Visualization

	Instructions
	Technical Requirements

