% Figure 12.6 Problem-specific procedures for the eight % puzzle. :- op( 900, fy, not). /* Problem-specific procedures for the eight puzzle Current situation is represented as a list of positions of the tiles, with first item in the list corresponding to the empty square. Example: This position is represented by: 3 1 2 3 2 8 4 [2/2, 1/3, 2/3, 3/3, 3/2, 3/1, 2/1, 1/1, 1/2] 1 7 6 5 1 2 3 "Empty' can move to any of its neighbours which means that "empty' and its neighbour interchange their positions. */ % s( Node, SuccessorNode, Cost) s( [Empty | Tiles], [Tile | Tiles1], 1) :- % All arc costs are 1 swap( Empty, Tile, Tiles, Tiles1). % Swap Empty and Tile in Tiles swap( Empty, Tile, [Tile | Ts], [Empty | Ts] ) :- mandist( Empty, Tile, 1). % Manhattan distance = 1 swap( Empty, Tile, [T1 | Ts], [T1 | Ts1] ) :- swap( Empty, Tile, Ts, Ts1). mandist( X/Y, X1/Y1, D) :- % D is Manhhattan dist. between two squares dif( X, X1, Dx), dif( Y, Y1, Dy), D is Dx + Dy. dif( A, B, D) :- % D is |A-B| D is A-B, D >= 0, ! ; D is B-A. % Heuristic estimate h is the sum of distances of each tile % from its "home' square plus 3 times "sequence' score h( [Empty | Tiles], H) :- goal( [Empty1 | GoalSquares] ), totdist( Tiles, GoalSquares, D), % Total distance from home squares seq( Tiles, S), % Sequence score H is D + 3*S. totdist( [], [], 0). totdist( [Tile | Tiles], [Square | Squares], D) :- mandist( Tile, Square, D1), totdist( Tiles, Squares, D2), D is D1 + D2. % seq( TilePositions, Score): sequence score seq( [First | OtherTiles], S) :- seq( [First | OtherTiles ], First, S). seq( [Tile1, Tile2 | Tiles], First, S) :- score( Tile1, Tile2, S1), seq( [Tile2 | Tiles], First, S2), S is S1 + S2. seq( [Last], First, S) :- score( Last, First, S). score( 2/2, _, 1) :- !. % Tile in centre scores 1 score( 1/3, 2/3, 0) :- !. % Proper successor scores 0 score( 2/3, 3/3, 0) :- !. score( 3/3, 3/2, 0) :- !. score( 3/2, 3/1, 0) :- !. score( 3/1, 2/1, 0) :- !. score( 2/1, 1/1, 0) :- !. score( 1/1, 1/2, 0) :- !. score( 1/2, 1/3, 0) :- !. score( _, _, 2). % Tiles out of sequence score 2 goal( [2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2] ). % Goal squares for tiles % Display a solution path as a list of board positions showsol( [] ). showsol( [P | L] ) :- showsol( L), nl, write( '---'), showpos( P). % Display a board position showpos( [S0,S1,S2,S3,S4,S5,S6,S7,S8] ) :- member( Y, [3,2,1] ), % Order of Y-coordinates nl, member( X, [1,2,3] ), % Order of X-coordinates member( Tile-X/Y, % Tile on square X/Y [' '-S0,1-S1,2-S2,3-S3,4-S4,5-S5,6-S6,7-S7,8-S8] ), write( Tile), fail % Backtrack to next square ; true. % All squares done % Starting positions for some puzzles start1( [2/2,1/3,3/2,2/3,3/3,3/1,2/1,1/1,1/2] ). % Requires 4 steps start2( [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ). % Requires 5 steps start3( [2/2,2/3,1/3,3/1,1/2,2/1,3/3,1/1,3/2] ). % Requires 18 steps % An example query: ?- start1( Pos), bestfirst( Pos, Sol), showsol( Sol). % not Goal): negation as failure; % Note: This is often available as a built-in predicate, % often written as prefix operator "\+", e.g. \+ likes(mary,snakes) not Goal :- Goal, !, fail ; true. % bestfirst( Start, Solution): Solution is a path from Start to a goal bestfirst( Start, Solution) :- expand( [], l( Start, 0/0), 9999, _, yes, Solution). % Assume 9999 is greater than any f-value % expand( Path, Tree, Bound, Tree1, Solved, Solution): % Path is path between start node of search and subtree Tree, % Tree1 is Tree expanded within Bound, % if goal found then Solution is solution path and Solved = yes % Case 1: goal leaf-node, construct a solution path expand( P, l( N, _), _, _, yes, [N|P]) :- goal(N). % Case 2: leaf-node, f-value less than Bound % Generate successors and expand them within Bound. expand( P, l(N,F/G), Bound, Tree1, Solved, Sol) :- F =< Bound, ( bagof( M/C, ( s(N,M,C), not member(M,P) ), Succ), !, % Node N has successors succlist( G, Succ, Ts), % Make subtrees Ts bestf( Ts, F1), % f-value of best successor expand( P, t(N,F1/G,Ts), Bound, Tree1, Solved, Sol) ; Solved = never % N has no successors - dead end ) . % Case 3: non-leaf, f-value less than Bound % Expand the most promising subtree; depending on % results, procedure continue will decide how to proceed expand( P, t(N,F/G,[T|Ts]), Bound, Tree1, Solved, Sol) :- F =< Bound, bestf( Ts, BF), min( Bound, BF, Bound1), % Bound1 = min(Bound,BF) expand( [N|P], T, Bound1, T1, Solved1, Sol), continue( P, t(N,F/G,[T1|Ts]), Bound, Tree1, Solved1, Solved, Sol). % Case 4: non-leaf with empty subtrees % This is a dead end which will never be solved expand( _, t(_,_,[]), _, _, never, _) :- !. % Case 5: f-value greater than Bound % Tree may not grow. expand( _, Tree, Bound, Tree, no, _) :- f( Tree, F), F > Bound. % continue( Path, Tree, Bound, NewTree, SubtreeSolved, TreeSolved, Solution) continue( _, _, _, _, yes, yes, Sol). continue( P, t(N,F/G,[T1|Ts]), Bound, Tree1, no, Solved, Sol) :- insert( T1, Ts, NTs), bestf( NTs, F1), expand( P, t(N,F1/G,NTs), Bound, Tree1, Solved, Sol). continue( P, t(N,F/G,[_|Ts]), Bound, Tree1, never, Solved, Sol) :- bestf( Ts, F1), expand( P, t(N,F1/G,Ts), Bound, Tree1, Solved, Sol). % succlist( G0, [ Node1/Cost1, ...], [ l(BestNode,BestF/G), ...]): % make list of search leaves ordered by their F-values succlist( _, [], []). succlist( G0, [N/C | NCs], Ts) :- G is G0 + C, h( N, H), % Heuristic term h(N) F is G + H, succlist( G0, NCs, Ts1), insert( l(N,F/G), Ts1, Ts). % Insert T into list of trees Ts preserving order w.r.t. f-values insert( T, Ts, [T | Ts]) :- f( T, F), bestf( Ts, F1), F =< F1, !. insert( T, [T1 | Ts], [T1 | Ts1]) :- insert( T, Ts, Ts1). % Extract f-value f( l(_,F/_), F). % f-value of a leaf f( t(_,F/_,_), F). % f-value of a tree bestf( [T|_], F) :- % Best f-value of a list of trees f( T, F). bestf( [], 9999). % No trees: bad f-value min( X, Y, X) :- X =< Y, !. min( X, Y, Y).