To jest stara wersja strony!


Machine learning 2014

Cele kursu

Celem kursu jest przekazanie najistotniejszych wiadomości związanych z problemami i metodami uczenia maszynowego w wymiarze logicznym, geometrycznym i probabilistycznym.
Kurs opiera się na usystematyzowanym przeglądzie podstawowych metod i algorytmów z poszczególnych grup.

Podręczniki

Ramowy plan wykładu 2014

  1. Wstęp: organizacja zajęć, omówienie dziedziny, 2014-03-04
  2. Wprowadzenie do ML i DT, przykłady, problemy, pojęcia, Weka [DMW:1], 2014-03-11
  3. Modele w uczeniu maszynowym, zadania uczenia, klasyfikacja [FLA:1,2], 2014-03-18
  4. Zadania klasyfikacji: atrybuty, modele i ich użycie w Weka [DMW:2] i [FLA:3], 2014-03-25
  5. Uczenie pojęć i drzew decyzyjnych [FLA:4,5], 2014-04-01, AIS:Decision Trees
  6. Uczenie drzew i reguł decyzyjnych [FLA:6], 2014-04-08
  7. Repetytorium: części 1-3 i części 4-6 – oba na podstawie slajdów z podręcznika P. Flacha, 2014-04-15
  8. Kolokwium z lab, 2014-04-29 ?
  9. Wybrane modele liniowe [FLA:7] regresja liniowa, perceptron, SVM, kernele, części 7-8
  10. Wybrane modele odległościowe [FLA:8]: sąsiedztwo, kNN, K-means, dendogramy, części 7-8
  11. Wybrane modele probabilistyczne [FCA] 6, 7.8
  12. Narzędzia do ML
  13. Przegląd i podsumowanie
  14. Wykład zaproszony

Ramowy plan laboratorium

Adres serwera: charon.kis.agh.edu.pl

  1. Laboratorium 1 - Wprowadzenie do Octave (2014-03-05)
  2. Laboratorium 2 - Uczenie pojęć (2014-03-12)
  3. Laboratorium 3 - Drzewa decyzyjne (2014-03-19)
  4. Laboratorium 4 - Regresja Liniowa (2014-03-26)
  5. Laboratorium 5 - Regresja Logistyczna (2014-04-02)
  6. Laboratorium 6 - Sztuczne sieci neuronowe (2013-04-03, 10)
  7. Laboratorium 7 - Sztuczne sieci neuronowe (2013-04-10)
  8. Laboratorium 8 - Bias/Variance (2013-04-15)
  9. Laboratorium 9 - Support Vector Machines
  10. Laboratorium 10 - Klasteryzacja
  11. Laboratorium 11 - Systemy rekomendacyjne i detekcja anomalii (15-05-2013)
  12. Laboratorium 12 - Sieci Bayesowskie - wprowadzenie (22-05-2013)
  13. Laboratorium 13 - Sieci Bayesowskie (29-05-2013)
  14. Kolokwium z laboratoriów 8-13 (05-06-2013)

Egzamin

  • I Termin:
  • II Termin:
  • III Termin:
pl/dydaktyka/ml/start.1395143130.txt.gz · ostatnio zmienione: 2017/07/16 23:25 (edycja zewnętrzna)
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0