Różnice

Różnice między wybraną wersją a wersją aktualną.

Odnośnik do tego porównania

pl:dydaktyka:ml:start2014 [2017/07/17 08:08] (aktualna)
Linia 1: Linia 1:
 +====== Machine learning 2014 ======
 +===== Cele kursu =====
 +Celem kursu jest przekazanie najistotniejszych wiadomości związanych z problemami i metodami uczenia maszynowego w wymiarze logicznym, geometrycznym i probabilistycznym.\\
 +Kurs opiera się na usystematyzowanym przeglądzie podstawowych metod i algorytmów z poszczególnych grup.
 +
 +===== Podręczniki =====
 +  * [FLA] [[http://​www.cs.bris.ac.uk/​~flach|Peter Flach]] //​[[http://​www.cs.bris.ac.uk/​~flach/​mlbook/​|Machine Learning. The Art and Science of Algorithms that Make Sense of Data]]//, Cambridge University Press, 2012.
 +  * [DMW] [[http://​www.cs.waikato.ac.nz/​~ihw|Ian Witten]], [[http://​www.cs.waikato.ac.nz/​~eibe|Eibe Frank]], [[http://​www.linkedin.com/​in/​mahall|Mark Hall]], //​[[http://​www.cs.waikato.ac.nz/​ml/​weka/​book.html|Data Mining:
 +Practical Machine Learning Tools and Techniques]]//,​ 3rd edition, Morgan Kaufmann Publishers, 2011
 +  * [TML] [[http://​www.cs.cmu.edu/​~tom/​|T. Mitchell]], //​[[http://​www.cs.cmu.edu/​~tom/​mlbook.html|Machine Learning]]//,​ McGraw Hill, 1997.
 +
 +Uzupełniająco:​
 +  * [CMB] [[http://​research.microsoft.com/​en-us/​um/​people/​cmbishop/​|Christopher M. Bishop]] //​[[http://​research.microsoft.com/​en-us/​um/​people/​cmbishop/​prml/​|Pattern Recognition and Machine Learning]]//,​ Springer, 2007.
 +  * [CIH] [[http://​www.ise.pw.edu.pl/​~cichosz|Paweł Cichosz]], //​[[http://​www.ise.pw.edu.pl/​~cichosz/​SU/​|Systemy uczące się]]//, WNT, 2000.
 +  * [KDA] [[http://​www.cioslab.vcu.edu/​index.html|Krzysztof Cios]] et al. //​[[http://​www.springer.com/​computer/​database+management+%26+information+retrieval/​book/​978-0-387-33333-5|Data Mining A Knowledge Discovery Approach]]//,​ Springer, 2007 [[http://​www.cioslab.vcu.edu/​Publications/​DMBook/​DMBook_Materials.htm|slajdy]]
 +  * [RSI] [[http://​www.recommenderbook.net/​|Recommender Systems - An Introduction]],​ [[http://​www.recommenderbook.net/​teaching-material/​tutorial-slides|tutorial]]
 +  * [IIR] [[http://​nlp.stanford.edu/​IR-book/​html/​htmledition/​irbook.html|Introduction to Information Retrieval]],​ [[http://​www.dcs.bbk.ac.uk/​~dell/​teaching/​ir/​|slajdy do kursu]]
 +  * [FCA] [[http://​www.cs.ubc.ca/​~poole/​|D. Poole]], [[http://​www.cs.ubc.ca/​~mack|A. Mackworth]],​ //​[[http://​artint.info|Artificial Intelligence:​ Foundations of Computational Agents]]//, Cambridge University Press, 2010, **[[http://​artint.info/​html/​ArtInt.html|ONLINE]]**
 +
 +Źródła ćwiczeń:
 +  * [ANG] [[http://​www.cs.stanford.edu/​people/​ang/​|Andrew Ng]] [[https://​www.coursera.org/​course/​ml|Coursera:​ Machine Learning]]
 +  * [ZMV] [[http://​www.cs.ccsu.edu/​~markov/​|Zdravko Markov]], //​[[http://​www.cs.ccsu.edu/​~markov/​ccsu_courses/​MachineLearning.html|CS570 - Topics in AI: Machine Learning]]//,​ oraz //​[[http://​www.cs.ccsu.edu/​~markov/​ccsu_courses/​mlprograms/​|Machine Learning Programs and Laboratory Experiments in Prolog]]//, 2003.
 +
 +Kursy on-line:
 +  * [[http://​www.cs.waikato.ac.nz/​~ihw|Ian Witten]], Data Mining with Weka: [[http://​wekamooc.blogspot.com/​]] [[https://​weka.waikato.ac.nz/​explorer]]
 +  * [[http://​www.cs.stanford.edu/​people/​ang/​|Andrew Ng]], Machine Learning: [[https://​www.coursera.org/​course/​ml]]
 +
 +Varia:
 +  * [[http://​www.cs.waikato.ac.nz/​ml/​weka/​|WEKA]]
 +  * [[https://​archive.ics.uci.edu/​ml/​|UCI ML repo]]
 +  * [[http://​www.cs.ccsu.edu/​~markov/​|Zdravko Markov]] and Daniel T. Larose [[http://​www.dataminingconsultant.com/​DMW.htm|Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage]]
 +
 +===== Ramowy plan wykładu 2014 =====
 +  - Wstęp: organizacja zajęć, omówienie dziedziny, 2014-03-04
 +  - Wprowadzenie do ML i DT, przykłady, problemy, pojęcia, Weka [DMW:1], 2014-03-11
 +  - Modele w uczeniu maszynowym, zadania uczenia, klasyfikacja [FLA:1,2], 2014-03-18
 +  - Zadania klasyfikacji:​ atrybuty, modele i ich użycie w Weka [DMW:2,3] i [FLA:3], 2014-03-25
 +  - Uczenie pojęć i drzew decyzyjnych [FLA:4,5], [DMW:4], 2014-04-08, [[http://​www.aispace.org/​dTree/​index.shtml|AIS:​Decision Trees]]
 +  - Uczenie reguł decyzyjnych [FLA:6], [DMW:4], 2014-04-15
 +  - Repetytorium:​ [[mlrep1|części 1-3]] i [[mlrep2|części 4-6]] -- oba na podstawie [[http://​www.cs.bris.ac.uk/​~flach/​mlbook/​materials/​mlbook-beamer.pdf|slajdów z podręcznika P. Flacha]], 2014-04-29
 +  - Kolokwium z lab, 2014-04-29 ​
 +  - Wybrane modele liniowe [FLA:7], [DMW:4] regresja liniowa, perceptron, SVM, kernele, [[mlrep3|części 7-8]], 2014-05-06
 +  - Wybrane modele odległościowe [FLA:8]: sąsiedztwo,​ kNN, K-means, dendogramy, [[mlrep3|części 7-8]], 2014-05-13
 +  - Wybrane modele probabilistyczne [FCA] [[http://​artint.info/​html/​ArtInt_138.html|6]],​ [[http://​artint.info/​html/​ArtInt_196.html|7.8]],​ 2014-05-20
 +  - Systemy rekomendujące:​ [[http://​www.recommenderbook.net/​|Recommender Systems - An Introduction]],​ [[http://​www.recommenderbook.net/​teaching-material/​tutorial-slides|tutorial]],​ 2014-05-27
 +  - Narzędzia do ML
 +  - ML a IR: [[http://​nlp.stanford.edu/​IR-book/​html/​htmledition/​irbook.html|Introduction to Information Retrieval]],​ [[http://​www.dcs.bbk.ac.uk/​~dell/​teaching/​ir/​|slajdy do kursu]], 2014-06-03
 +  - Przegląd i podsumowanie,​ 2014-06-10
 +  - Wykład zaproszony
 +
 +
 +===== Ramowy plan laboratorium =====
 +Adres serwera: charon.kis.agh.edu.pl
 +
 +  - [[.:​lab1|Laboratorium 1]] - Wprowadzenie do Octave (2014-03-05)
 +  - [[.:​lab2|Laboratorium 2]] - Uczenie pojęć (2014-03-12)
 +  - [[.:​2014lab3|Laboratorium 3]] - Drzewa decyzyjne (2014-03-19)
 +  - [[.:​2014lab4|Laboratorium 4]] - Reguły asocjacyjne (2014-04-02)
 +  - **Kolokwium z lab 1-4**
 +  - [[.:​lab4|Laboratorium 5]] - Regresja Liniowa (2014-04-09)
 +  - [[.:​lab5|Laboratorium 6]] - Regresja Logistyczna (2014-04-16)
 +  - [[.:​lab6|Laboratorium 7]] - Sztuczne sieci neuronowe (2014-04-23)
 +  - [[.:​lab6|Laboratorium 8]] - Sztuczne sieci neuronowe (2014-04-30)
 +  - [[.:​lab8|Laboratorium 9]] - Bias/​Variance (2014-05-07)
 +  - **Kolokwium z lab 5-9** - wykład 13.05.2014
 +  - [[.:​lab9|Laboratorium 10]] - Support Vector Machines (2014-05-14)
 +  - [[.:​lab10|Laboratorium 11]] - Klasteryzacja (2014-05-21)
 +  - [[.:​lab11|Laboratorium 12]] - Systemy rekomendacyjne i detekcja anomalii ​
 +  - [[.:​lab12|Laboratorium 13]] - Sieci Bayesowskie - wprowadzenie ​
 +  - [[.:​lab13|Laboratorium 14]] - Sieci Bayesowskie  ​
 +  - **Kolokwium z lab 10-14** ​
 +
 +===== Egzamin =====
 +  * I Termin: 25.06, g. 15:00
 +  * II Termin: 01.07, g. 10:00
 +  * III Termin: 02.09, g. 10:00
 +
 +sala 429, C2
 +
  
pl/dydaktyka/ml/start2014.txt · ostatnio zmienione: 2017/07/17 08:08 (edycja zewnętrzna)
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0