% Figure 12.6 Problem-specific procedures for the eight
% puzzle.
:- op( 900, fy, not).
/* Problem-specific procedures for the eight puzzle
Current situation is represented as a list of positions of the tiles,
with first item in the list corresponding to the empty square.
Example:
This position is represented by:
3 1 2 3
2 8 4 [2/2, 1/3, 2/3, 3/3, 3/2, 3/1, 2/1, 1/1, 1/2]
1 7 6 5
1 2 3
"Empty' can move to any of its neighbours which means
that "empty' and its neighbour interchange their positions.
*/
% s( Node, SuccessorNode, Cost)
s( [Empty | Tiles], [Tile | Tiles1], 1) :- % All arc costs are 1
swap( Empty, Tile, Tiles, Tiles1). % Swap Empty and Tile in Tiles
swap( Empty, Tile, [Tile | Ts], [Empty | Ts] ) :-
mandist( Empty, Tile, 1). % Manhattan distance = 1
swap( Empty, Tile, [T1 | Ts], [T1 | Ts1] ) :-
swap( Empty, Tile, Ts, Ts1).
mandist( X/Y, X1/Y1, D) :- % D is Manhhattan dist. between two squares
dif( X, X1, Dx),
dif( Y, Y1, Dy),
D is Dx + Dy.
dif( A, B, D) :- % D is |A-B|
D is A-B, D >= 0, !
;
D is B-A.
% Heuristic estimate h is the sum of distances of each tile
% from its "home' square plus 3 times "sequence' score
h( [Empty | Tiles], H) :-
goal( [Empty1 | GoalSquares] ),
totdist( Tiles, GoalSquares, D), % Total distance from home squares
seq( Tiles, S), % Sequence score
H is D + 3*S.
totdist( [], [], 0).
totdist( [Tile | Tiles], [Square | Squares], D) :-
mandist( Tile, Square, D1),
totdist( Tiles, Squares, D2),
D is D1 + D2.
% seq( TilePositions, Score): sequence score
seq( [First | OtherTiles], S) :-
seq( [First | OtherTiles ], First, S).
seq( [Tile1, Tile2 | Tiles], First, S) :-
score( Tile1, Tile2, S1),
seq( [Tile2 | Tiles], First, S2),
S is S1 + S2.
seq( [Last], First, S) :-
score( Last, First, S).
score( 2/2, _, 1) :- !. % Tile in centre scores 1
score( 1/3, 2/3, 0) :- !. % Proper successor scores 0
score( 2/3, 3/3, 0) :- !.
score( 3/3, 3/2, 0) :- !.
score( 3/2, 3/1, 0) :- !.
score( 3/1, 2/1, 0) :- !.
score( 2/1, 1/1, 0) :- !.
score( 1/1, 1/2, 0) :- !.
score( 1/2, 1/3, 0) :- !.
score( _, _, 2). % Tiles out of sequence score 2
goal( [2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2] ). % Goal squares for tiles
% Display a solution path as a list of board positions
showsol( [] ).
showsol( [P | L] ) :-
showsol( L),
nl, write( '---'),
showpos( P).
% Display a board position
showpos( [S0,S1,S2,S3,S4,S5,S6,S7,S8] ) :-
member( Y, [3,2,1] ), % Order of Y-coordinates
nl, member( X, [1,2,3] ), % Order of X-coordinates
member( Tile-X/Y, % Tile on square X/Y
[' '-S0,1-S1,2-S2,3-S3,4-S4,5-S5,6-S6,7-S7,8-S8] ),
write( Tile),
fail % Backtrack to next square
;
true. % All squares done
% Starting positions for some puzzles
start1( [2/2,1/3,3/2,2/3,3/3,3/1,2/1,1/1,1/2] ). % Requires 4 steps
start2( [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ). % Requires 5 steps
start3( [2/2,2/3,1/3,3/1,1/2,2/1,3/3,1/1,3/2] ). % Requires 18 steps
% An example query: ?- start1( Pos), bestfirst( Pos, Sol), showsol( Sol).
% not Goal): negation as failure;
% Note: This is often available as a built-in predicate,
% often written as prefix operator "\+", e.g. \+ likes(mary,snakes)
not Goal :-
Goal, !, fail
;
true.
% bestfirst( Start, Solution): Solution is a path from Start to a goal
bestfirst( Start, Solution) :-
expand( [], l( Start, 0/0), 9999, _, yes, Solution).
% Assume 9999 is greater than any f-value
% expand( Path, Tree, Bound, Tree1, Solved, Solution):
% Path is path between start node of search and subtree Tree,
% Tree1 is Tree expanded within Bound,
% if goal found then Solution is solution path and Solved = yes
% Case 1: goal leaf-node, construct a solution path
expand( P, l( N, _), _, _, yes, [N|P]) :-
goal(N).
% Case 2: leaf-node, f-value less than Bound
% Generate successors and expand them within Bound.
expand( P, l(N,F/G), Bound, Tree1, Solved, Sol) :-
F =< Bound,
( bagof( M/C, ( s(N,M,C), not member(M,P) ), Succ),
!, % Node N has successors
succlist( G, Succ, Ts), % Make subtrees Ts
bestf( Ts, F1), % f-value of best successor
expand( P, t(N,F1/G,Ts), Bound, Tree1, Solved, Sol)
;
Solved = never % N has no successors - dead end
) .
% Case 3: non-leaf, f-value less than Bound
% Expand the most promising subtree; depending on
% results, procedure continue will decide how to proceed
expand( P, t(N,F/G,[T|Ts]), Bound, Tree1, Solved, Sol) :-
F =< Bound,
bestf( Ts, BF), min( Bound, BF, Bound1), % Bound1 = min(Bound,BF)
expand( [N|P], T, Bound1, T1, Solved1, Sol),
continue( P, t(N,F/G,[T1|Ts]), Bound, Tree1, Solved1, Solved, Sol).
% Case 4: non-leaf with empty subtrees
% This is a dead end which will never be solved
expand( _, t(_,_,[]), _, _, never, _) :- !.
% Case 5: f-value greater than Bound
% Tree may not grow.
expand( _, Tree, Bound, Tree, no, _) :-
f( Tree, F), F > Bound.
% continue( Path, Tree, Bound, NewTree, SubtreeSolved, TreeSolved, Solution)
continue( _, _, _, _, yes, yes, Sol).
continue( P, t(N,F/G,[T1|Ts]), Bound, Tree1, no, Solved, Sol) :-
insert( T1, Ts, NTs),
bestf( NTs, F1),
expand( P, t(N,F1/G,NTs), Bound, Tree1, Solved, Sol).
continue( P, t(N,F/G,[_|Ts]), Bound, Tree1, never, Solved, Sol) :-
bestf( Ts, F1),
expand( P, t(N,F1/G,Ts), Bound, Tree1, Solved, Sol).
% succlist( G0, [ Node1/Cost1, ...], [ l(BestNode,BestF/G), ...]):
% make list of search leaves ordered by their F-values
succlist( _, [], []).
succlist( G0, [N/C | NCs], Ts) :-
G is G0 + C,
h( N, H), % Heuristic term h(N)
F is G + H,
succlist( G0, NCs, Ts1),
insert( l(N,F/G), Ts1, Ts).
% Insert T into list of trees Ts preserving order w.r.t. f-values
insert( T, Ts, [T | Ts]) :-
f( T, F), bestf( Ts, F1),
F =< F1, !.
insert( T, [T1 | Ts], [T1 | Ts1]) :-
insert( T, Ts, Ts1).
% Extract f-value
f( l(_,F/_), F). % f-value of a leaf
f( t(_,F/_,_), F). % f-value of a tree
bestf( [T|_], F) :- % Best f-value of a list of trees
f( T, F).
bestf( [], 9999). % No trees: bad f-value
min( X, Y, X) :-
X =< Y, !.
min( X, Y, Y).