A loop-avoiding interpreter for hypotheses.
Source: PROLOG programming for artificial intelligence, 3rd Edition, Harlow, 2001, ISBN 0-201-40375-7.
% Figure 19.3 A loop-avoiding interpreter for hypotheses.
% Interpreter for hypotheses
% prove( Goal, Hypo, Answ):
% Answ = yes, if Goal derivable from Hypo in at most D steps
% Answ = no, if Goal not derivable
% Answ = maybe, if search terminated after D steps inconclusively
prove( Goal, Hypo, Answer) :-
max_proof_length( D),
prove( Goal, Hypo, D, RestD),
(RestD >= 0, Answer = yes % Proved
;
RestD < 0, !, Answer = maybe % Maybe, but it looks like inf. loop
).
prove( Goal, _, no). % Otherwise Goal definitely cannot be proved
% prove( Goal, Hyp, MaxD, RestD):
% MaxD allowed proof length, RestD 'remaining length' after proof;
% Count only proof steps using Hyp
prove( G, H, D, D) :-
D < 0, !. % Proof length overstepped
prove( [], _, D, D) :- !.
prove( [G1 | Gs], Hypo, D0, D) :- !,
prove( G1, Hypo, D0, D1),
prove( Gs, Hypo, D1, D).
prove( G, _, D, D) :-
prolog_predicate( G), % Background predicate in Prolog?
call( G). % Call of background predicate
prove( G, Hyp, D0, D) :-
D0 =< 0, !, D is D0-1 % Proof too long
;
D1 is D0-1, % Remaining proof length
member( Clause/Vars, Hyp), % A clause in Hyp
copy_term( Clause, [Head | Body] ), % Rename variables in clause
G = Head, % Match clause's head with goal
prove( Body, Hyp, D1, D). % Prove G using Clause