% Figure 10.10 AVL-dictionary insertion. In this program, an attempt
% to insert a duplicate will fail. See Fig. 10.9 for combine.
% addavl( Tree, X, NewTree): insertion into AVL-dictionary
% Tree = t( Left, Root, Right)/HeightOfTree
% Empty tree = nil/0
addavl( nil/0, X, t(nil/0,X,nil/0)/1). % Add X to empty tree
addavl( t(L,Y,R)/Hy, X, NewTree) :- % Add X to nonempty tree
gt( Y, X),
addavl( L, X, t(L1,Z,L2)/_), % Add into left subtree
combine( L1, Z, L2, Y, R, NewTree). % Combine ingredients of NewTree
addavl( t(L,Y,R)/Hy, X, NewTree) :-
gt( X, Y),
addavl( R, X, t(R1,Z,R2)/_), % Add into right subtree
combine( L, Y, R1, Z, R2, NewTree).
combine( T1/H1, A, t(T21,B,T22)/H2, C, T3/H3,
t( t(T1/H1,A,T21)/Ha, B, t(T22,C,T3/H3)/Hc)/Hb ) :-
H2 > H1, H2 > H3, % Middle subtree tallest
Ha is H1 + 1,
Hc is H3 + 1,
Hb is Ha + 1.
combine( T1/H1, A, T2/H2, C, T3/H3,
t( T1/H1, A, t(T2/H2,C,T3/H3)/Hc)/Ha ) :-
H1 >= H2, H1 >= H3, % Tall left subtree
max1( H2, H3, Hc),
max1( H1, Hc, Ha).
combine( T1/H1, A, T2/H2, C, T3/H3,
t( t(T1/H1,A,T2/H2)/Ha, C, T3/H3)/Hc ) :-
H3 >= H2, H3 >= H1, % Tall right subtree
max1( H1, H2, Ha),
max1( Ha, H3, Hc).
max1( U, V, M) :- % M is 1 + max. of U and V
U > V, !, M is U + 1;
M is V + 1.
gt(X,ROOT) :- X>ROOT.