Różnice

Różnice między wybraną wersją a wersją aktualną.

Odnośnik do tego porównania

Both sides previous revision Poprzednia wersja
Nowa wersja
Poprzednia wersja
pl:miw:2009:miw09_owl_rules_2:prezentacja [2009/09/12 02:45]
jsi08
pl:miw:2009:miw09_owl_rules_2:prezentacja [2019/06/27 15:50] (aktualna)
Linia 128: Linia 128:
  
 ===== Mapping to RDF Graphs ===== ===== Mapping to RDF Graphs =====
-  * źródło: [[http://​www.cs.man.ac.uk/​~horrocks/​DAML/​Rules/​|http://​www.cs.man.ac.uk/​~horrocks/​DAML/​Rules/​]] 
- 
- 
  
 Reguły zawierają zmienne, więc bardzo trudne jest traktowanie ich jako semantyczne rozszerzenie RDF. Aczkolwiek możliwe jest dostarczenie składni RDF dla reguł. Jest tak, ponieważ semantyka wynikowego grafu RDF nie jest rozszerzeniem RDF Semantics. Mapowanie do RDF/XML jest prościej tworzone jako rozszerzenie transformacji XSLT dla składni OWL XML.  Reguły zawierają zmienne, więc bardzo trudne jest traktowanie ich jako semantyczne rozszerzenie RDF. Aczkolwiek możliwe jest dostarczenie składni RDF dla reguł. Jest tak, ponieważ semantyka wynikowego grafu RDF nie jest rozszerzeniem RDF Semantics. Mapowanie do RDF/XML jest prościej tworzone jako rozszerzenie transformacji XSLT dla składni OWL XML. 
  
-Poniżej przykład przedstawiający rozszerzenie ​składni OWL RDF/XML o reguły.+===== Przykład rozszerzenia ​składni OWL RDF/XML o reguły ​=====
  
 <code xml> <code xml>
Linia 173: Linia 170:
  
 ===== Inductive Logic Programming ===== ===== Inductive Logic Programming =====
-  * źródło: [[http://​sunsite.informatik.rwth-aachen.de/​Publications/​CEUR-WS/​Vol-314/​42.pdf]] 
  
  
Linia 181: Linia 177:
  
 Indukcja z ILP, uogólnia poszczególne instancje w obecnej podstawie wiedzy, znajdując poprawne hipotezy. Ich prawdziwość zależy od poniższego otoczenia. Obecnie istnieje kilka formalizmów indukcji w logice opartej na klauzulach. Indukcja z ILP, uogólnia poszczególne instancje w obecnej podstawie wiedzy, znajdując poprawne hipotezy. Ich prawdziwość zależy od poniższego otoczenia. Obecnie istnieje kilka formalizmów indukcji w logice opartej na klauzulach.
 +
 +===== Inductive Logic Programming cd. =====
  
 Zostały zaproponowane dwa frameworki ILP, które stosują hybrydowy język DL-HCL dla reprezentacji zarówno hipotez jak i wiedzy. Zostały zaproponowane dwa frameworki ILP, które stosują hybrydowy język DL-HCL dla reprezentacji zarówno hipotez jak i wiedzy.
Linia 194: Linia 192:
  
 ===== Hybrid MKNF ===== ===== Hybrid MKNF =====
-  * źródło: [[http://​www.comlab.ox.ac.uk/​people/​ian.horrocks/​Publications/​download/​2006/​MHRS06.pdf]] + 
- +
 Logic Programing jest często brane pod uwagę jako sposób na pokonanie kilku wad OWL, takich jak niezdolność do tworzenia ograniczeń czy wykonywania kwerend "​closed-world"​. Jakkolwiek semantyka OWL jest typu "​open-world"​ i wydaje się być niekompatybilna z semantyką "​closed-world"​ LP. Dlatego zaproponowano alternatywny język ontologii bazujący całkowicie na LP. Jest nim hybrydowy MKNF, który integruje OWL z LP. Logic Programing jest często brane pod uwagę jako sposób na pokonanie kilku wad OWL, takich jak niezdolność do tworzenia ograniczeń czy wykonywania kwerend "​closed-world"​. Jakkolwiek semantyka OWL jest typu "​open-world"​ i wydaje się być niekompatybilna z semantyką "​closed-world"​ LP. Dlatego zaproponowano alternatywny język ontologii bazujący całkowicie na LP. Jest nim hybrydowy MKNF, który integruje OWL z LP.
  
Linia 206: Linia 202:
   * modelowanie wyjątków   * modelowanie wyjątków
  
-**Rozszerzenie DL o First-Order Rules**+===== Rozszerzenie DL o First-Order Rules ===== 
  
 Głównym założeniem jest dodanie aksjomatów postaci H ← B1, . . . ,Bn gdzie H (następnik reguły) i Bi (poprzednik) mogą być postaci C(s) lub R(s, t), przy czym C to koncepcja, R rola, a s i t są termami (np. zmienne czy tzw. '​individuals'​). Reguły te są interpretowane przez standardową semantykę pierwszego rzędu jako \\  Głównym założeniem jest dodanie aksjomatów postaci H ← B1, . . . ,Bn gdzie H (następnik reguły) i Bi (poprzednik) mogą być postaci C(s) lub R(s, t), przy czym C to koncepcja, R rola, a s i t są termami (np. zmienne czy tzw. '​individuals'​). Reguły te są interpretowane przez standardową semantykę pierwszego rzędu jako \\ 
 ∀x : H ∨ ¬B1 ∨ . . . ∨ ¬Bn, gdzie x jest zbiorem dowolnych zmiennych z wszystkich H i Bi. ∀x : H ∨ ¬B1 ∨ . . . ∨ ¬Bn, gdzie x jest zbiorem dowolnych zmiennych z wszystkich H i Bi.
  
-**Rozszerzenie DL o niemonotoniczne właściwości** +===== Rozszerzenie DL o niemonotoniczne właściwości ​===== 
  
 Rozszerzenie to opiera się na auto-epistemicznej logice, która pozwala wnioskować o przekonaniach. Wprowadzono auto-epistemiczny operator K, który może być stosowany do koncepcji i ról z intuicyjnym znaczeniem - "jest wiadomo, że zajdzie"​. Rozszerzenie to opiera się na auto-epistemicznej logice, która pozwala wnioskować o przekonaniach. Wprowadzono auto-epistemiczny operator K, który może być stosowany do koncepcji i ról z intuicyjnym znaczeniem - "jest wiadomo, że zajdzie"​.
Linia 218: Linia 216:
   * jako operatory w bazie wiedzy - MKNF (Minimal Knowledge and Negation-as-Failure) - umożliwia domyślną negację i modelowanie wyjątków. Przyjęto auto-epistemiczny operator A ('​not'​ z first-order MKNF) o nieformalnym znaczeniu - "może być fałszem"​.   * jako operatory w bazie wiedzy - MKNF (Minimal Knowledge and Negation-as-Failure) - umożliwia domyślną negację i modelowanie wyjątków. Przyjęto auto-epistemiczny operator A ('​not'​ z first-order MKNF) o nieformalnym znaczeniu - "może być fałszem"​.
  
-**Hybrid MKNF KBs**+===== Hybrid MKNF KBs ===== 
  
 Baza wiedzy //K// w hybrid MKNF składa się z bazy wiedzy //O// w rozstrzygalnym DL i ze zbioru //P// reguł MKNF w następującej postaci:\\ Baza wiedzy //K// w hybrid MKNF składa się z bazy wiedzy //O// w rozstrzygalnym DL i ze zbioru //P// reguł MKNF w następującej postaci:\\
Linia 232: Linia 231:
  
 ===== F-Logic rules ===== ===== F-Logic rules =====
-  * źródło: [[http://​sunsite.informatik.rwth-aachen.de/​Publications/​CEUR-WS/​Vol-287/​paper_8.pdf]] 
  
  
 Reguły F-Logic są regułami Logic Programming na atomach F-Logic. ​ Reguły F-Logic są regułami Logic Programming na atomach F-Logic. ​
- 
-**Składnia F-Logic** 
  
 Alfabet języka F-Logic składa się ze zbioru F symboli funkcji, pełniących rolę konstruktorów obiektów. '​Id-term'​y są złożone z konstruktorów i zmiennych i są interpretowane jako elementy świata.  ​ Alfabet języka F-Logic składa się ze zbioru F symboli funkcji, pełniących rolę konstruktorów obiektów. '​Id-term'​y są złożone z konstruktorów i zmiennych i są interpretowane jako elementy świata.  ​
 Niech o, c, d, d<​sub>​1</​sub>,​ ... , d<​sub>​n</​sub>,​ p, v, v<​sub>​1</​sub>,​ v<​sub>​n</​sub>​ będą id-term lub literałami. Zauważmy, że URL jako podklasa klasy string może wskazywać obiekty. Niech o, c, d, d<​sub>​1</​sub>,​ ... , d<​sub>​n</​sub>,​ p, v, v<​sub>​1</​sub>,​ v<​sub>​n</​sub>​ będą id-term lub literałami. Zauważmy, że URL jako podklasa klasy string może wskazywać obiekty.
 +
 +===== Składnia F-Logic =====
  
 Na przykład: Na przykład:
Linia 251: Linia 249:
 Reguła F-Logic jest logiczną regułą h ← b na atomach F-Logic, np. asercje '​is-a'​ i obiektowe atomy. F-Logic program jest zbiorem reguł. Semantyka reguł F-Logic jest zdefiniowana przez struktury Herbrand'​a,​ gdzie świat składa się z podstawowych id-term'​ów. H-struktura jest zbiorem podstawowych atomów F-Logic, opisujących obiektowy świat, więc musi spełniać kilka domykających aksjomatów związanych z ogólnymi, zorientowanymi obiektowo właściwościami. Reguła F-Logic jest logiczną regułą h ← b na atomach F-Logic, np. asercje '​is-a'​ i obiektowe atomy. F-Logic program jest zbiorem reguł. Semantyka reguł F-Logic jest zdefiniowana przez struktury Herbrand'​a,​ gdzie świat składa się z podstawowych id-term'​ów. H-struktura jest zbiorem podstawowych atomów F-Logic, opisujących obiektowy świat, więc musi spełniać kilka domykających aksjomatów związanych z ogólnymi, zorientowanymi obiektowo właściwościami.
  
-**Aksjomaty F-Logic**+===== Aksjomaty F-Logic ​===== 
  
 Zbiór H (może być nieskończony) podstawowych atomów jest H-strukturą jeśli dla dowolnych u, u<​sub>​0</​sub>,​ . . . , u<​sub>​n</​sub>​ i u<​sub>​m</​sub>​ ze zbioru H zachodzą następujące warunki: Zbiór H (może być nieskończony) podstawowych atomów jest H-strukturą jeśli dla dowolnych u, u<​sub>​0</​sub>,​ . . . , u<​sub>​n</​sub>​ i u<​sub>​m</​sub>​ ze zbioru H zachodzą następujące warunki:
Linia 267: Linia 266:
  
 ===== What reasoning support for Ontology and Rules? ===== ===== What reasoning support for Ontology and Rules? =====
-  * źródło: [[http://​sunsite.informatik.rwth-aachen.de/​Publications/​CEUR-WS/​Vol-188/​sub21.pdf]] 
  
 Jako, że jest to niemożliwe,​ żeby mieć równocześnie rozstrzygalność,​ kompletność i ekspresyjność,​ wymagane właściwości aplikacji muszą być dokładnie określone, ze względu na możliwości i ograniczenia metody wnioskowania,​ w celu wybrania jak najlepszego języka. Użyteczne jest wyjaśnienie,​ które właściwości są przewidywane pod ograniczeniami DLP, kiedy silnik reguł produkcyjnych np. Jess i mechanizm wnioskujący języka DL np. Racer są używane oddzielnie. Jeżeli DLP nie jest wystarczający i jest potrzebna ekspresyjność OWL DL, to dobrym rozwiązaniem jest rozszerzenie OWL DL bezpiecznymi regułami Datalog (¬∨), językiem SWRL lub FOL, zależnie od przewidywanej ekspresywności i obliczeniowych własności. Jako, że jest to niemożliwe,​ żeby mieć równocześnie rozstrzygalność,​ kompletność i ekspresyjność,​ wymagane właściwości aplikacji muszą być dokładnie określone, ze względu na możliwości i ograniczenia metody wnioskowania,​ w celu wybrania jak najlepszego języka. Użyteczne jest wyjaśnienie,​ które właściwości są przewidywane pod ograniczeniami DLP, kiedy silnik reguł produkcyjnych np. Jess i mechanizm wnioskujący języka DL np. Racer są używane oddzielnie. Jeżeli DLP nie jest wystarczający i jest potrzebna ekspresyjność OWL DL, to dobrym rozwiązaniem jest rozszerzenie OWL DL bezpiecznymi regułami Datalog (¬∨), językiem SWRL lub FOL, zależnie od przewidywanej ekspresywności i obliczeniowych własności.
Linia 295: Linia 293:
  
  
-  * [[hekate:semweb:​dl_intro|Description Logics and OWL in the Semantic Web]]+  * [[hekate:​dl_intro|Description Logics and OWL in the Semantic Web]]
  
pl/miw/2009/miw09_owl_rules_2/prezentacja.1252716339.txt.gz · ostatnio zmienione: 2019/06/27 15:57 (edycja zewnętrzna)
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0